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GENERAL SITUATION
Uncertainty Quantification in Engineering

» close to reality
» numerically efficient

Endeavor
numerical modeling − physical phenomena, structure, and environment

prognosis − system behavior, hazards, safety, risk, robustness,
economic and social impact, ...

Deterministic methods
deterministic
structural parameters Realitydeterministic

computational models
 

Uncertainty ?

Consequences ?Variability ?

Vagueness ?

Indeterminacy ?

Fluctuations ?

Imprecision ?

Ambiguity ?
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Major directions of development … and combinations thereof
Advanced
Stochastic Modeling

Monte Carlo 
Simulation methods

MULTI-DISCIPLINARY CHALLENGE
Uncertainty Quantification in Engineering

Generalized models
for vague and imprecise 
information
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Extreme Events

JOINT TIME-FREQUENCY ANALYSIS
Advanced Stochastic Modeling

Civil infrastructure
» seismic motions
» ocean waves
» winds
» blast events
» storms
» hurricanes
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JOINT TIME-FREQUENCY ANALYSIS
Advanced Stochastic Modeling

Response
non-stationary 
stochastic process

System

nonlinear and time-varying behavior
due to severe dynamic excitation

class of functions with compact support in both time
and frequency domains used for the localization of a
function in these domains

Alfred Haar
(1909)

Excitation
non-stationary
stochastic process 
(earthquake, wind,
ocean waves,
blast events etc)

 excitations with time-varying intensity & frequency content
joint time-frequency analysis

Wavelets



6 / 27Michael Beer

JOINT TIME-FREQUENCY ANALYSIS
Advanced Stochastic Modeling

Evolutionary Power Spectrum (EPS) estimation

distribution of “power” or “energy”
of the underlying non-stationary 
stochastic process 
over different frequencies

basis for most engineering load models

» locally stationary wavelet process
» representation of random properties in correspondence with the EPS

   , , ,   j k j k j k
j k

f t w t

mathematical model for random process representation

Generalized Harmonic Wavelets
» orthogonality & additional parameter

convenient frequency windowing
» flexible window size
» non-overlapping supports
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JOINT TIME-FREQUENCY ANALYSIS
Advanced Stochastic Modeling

Incomplete data
process records with gaps
» sensor failures
» data corruption
» power outages
» ...

artificial intelligence technology
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JOINT TIME-FREQUENCY ANALYSIS
Advanced Stochastic Modeling

Compressive sensing approach

Least squares L1 minimization



Assume sparsity in a known basis

Stochastic process with 3 
harmonics and white noise

Limited number of sample 
points available

Assume sparsity in harmonic basis to 
identify key frequencies

Incomplete data
Minimization of ixi in Ax = y
promotes sparse solutions
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JOINT TIME-FREQUENCY ANALYSIS
Advanced Stochastic Modeling

Compressive sensing approach

Wavelet basis (example)
Target spectrum

CS reconstruction

» Harmonic basis construction

Example for non-separable, non-
stationary process: (50% randomly 
distributed missing data over 25 records using 
CS with a harmonic wavelet basis)

Incomplete data

missing 
data
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Reliability Analysis

Incomplete
non-stationary 
earthquake 
records

Spectrum estimation

Simulated 
realizations

EXAMPLE: RELIABILITY ANALYSIS
Advanced Stochastic Modeling

Incomplete Earthquake Records

Subset Sampling;
Pf depending
on threshold
for interstory drift

Collaboration with 
Professor Hector Jensen
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EXAMPLE: RELIABILITY ANALYSIS
Advanced Stochastic Modeling

Incomplete Earthquake Records
Scenario 1: data removed at random positions (10%, 20%, 30%, 40%)

Collaboration with 
Professor Hector Jensen



12 / 27Michael Beer

EXAMPLE: RELIABILITY ANALYSIS
Advanced Stochastic Modeling

Incomplete Earthquake Records
Scenario 2: data removed at 10 intervals located at random positions

(10%, 20%, 30%, 40%)


Collaboration with 
Professor Hector Jensen
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CHALLENGE
of

imprecise and rare data

Is the
reliability analysis
still reliable ?

Is it safe ?statistical analysis

Effects on Pf ?

reliability
analysis

F(x)

model

Pf

~

~

set of plausible
s

[Pf,l, Pf,r]
imprecision
reflected in Pf

Sensitivity of Pf to imprecision ?

Generalized models for vague and imprecise information

epistemic uncertainty
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CLASSIFICATION AND MODELING

» reducible uncertainty
» property of the analyst
» lack of knowledge or perception

According to sources
aleatory uncertainty
» irreducible uncertainty
» property of the system
» fluctuations / variability
stochastic characteristics

epistemic uncertainty

collection of all problematic cases, 
inconsistency of information

» non-probabilistic characteristics

According to information content
uncertainty
» probabilistic information

traditional and subjective
probabilistic models

imprecision

set-theoretical models

no specific modeltraditional
probabilistic models

In view of the purpose of the analysis
averaged results, value ranges, worst case, etc.  ?

Generalized models for vague and imprecise information
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CLASSIFICATION AND MODELING
Simultaneous appearance of uncertainty and imprecision

separate treatment of uncertainty and imprecision in one model
generalized models combining probabilistics and set theory

common basic feature:
set of plausible probabilistic models over a range of imprecision

» interval probabilities
» sets of probabilities / p-box approach
» random sets
» fuzzy random variables / fuzzy probabilities
» evidence theory / Dempster-Shafer theory

concepts of imprecise probabilities




bounds on probabilities for events of interest

(set of models which agree with the observations)

Generalized models for vague and imprecise information
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IMPLEMENTING EPISTEMIC UNCERTAINTY

 
   

   









      
       

 
1 n

n

i
i 1

1 nX , ,X n

i
i 1

f x g
f x , ,x

f x g d
posterior distribution

prior distribution

» approach result from “inside the epistemic uncertainty”

Subjective probabilities
Bayesian update

Imprecise probabilities
set-theoretical models for indeterminacy / imprecision

choice depending on available information and purpose of the analysis

» approach result from “outside the epistemic uncertainty”

         l i u i iF x F x ,F x  x e.g., set-valued parameters
in probabilistic models

F(x)

F(x)
~

x

(imprecise data, vague conditions or copulas etc.)

approaches not competing but complementary and can be combined
(e.g. set of priors, update with imprecise data)

Generalized models for vague and imprecise information
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FUZZY PROBABILITIES
Model

» input: fuzzy set of plausible probabilistic models

Relationship to other concepts of imprecise probabilities

» output: bounds on probabilities/probabilistic parameters for
events/quantities of interest for several intensities of imprecision

Generalized models for vague and imprecise information

fuzzy random variables

       
j j ji iX X , X  x x  ifuzzy set of real-valued random variables

                    
j j ji j jF x F x , F x  X X, F x X  jfuzzy set of cdfs

» focal subsets represented by fuzzy sets
evidence theory

(frequentist view)

» frequentist view: probability of focal subsets induced by elementary events

» fuzzy set of p-boxes
p-box approach

             
    

    



     

     


l uF x F x , F x  F x F x F x , 

                                   F x  0 1

,

,
Numerical processing
 stochastic techniques combined with interval / fuzzy analysis
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FUZZY PROBABILITIES IN RELIABILITY ANALYSIS

structural parameters
Failure probabilityFuzzy parameters

X~

acceptable Pf

Pf0

i

µ(x)
1

x

Pf
~

probabilistic model parameters

acceptable
parameter interval

sensitivity
of Pf w.r.t. x

0

i

µ(Pf)
1

mapping

X~ Pf
~

coarse specifications of design parameters  &  probabilistic models
attention to / exclude model options leading to large imprecision of Pf

acceptable imprecision of parameters  &  probabilistic models
indications to collect additional information
definition of quality requirements 
robust design

(.) not important, but 
analysis with various 
intensities of imprecision

Generalized models for vague and imprecise information
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EXAMPLE: RELIABILITY ANALYSIS
Fixed jacket platform

imprecision in the models for
» wave, drag and ice loads
» wind load
» corrosion
» joints of tubular members
» foundation
» possible damage



Generalized models for vague and imprecise information

Collaboration with Profs.
Quek Ser Tong
Choo Yoo Sang
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EXAMPLE: RELIABILITY ANALYSIS

dimensions
» height: 142 m
» top: 27 X 54 m
» bottom: 56 X 70 m



Monte Carlo simulation with importance 
sampling and response surface approximation



loads, environment
» T = 15C,  t = 5 a
» random: wave height, current, yield stress,

and corrosion depth c(t,E)
» pdf / interval for imprecise parameters



Reliability analysis

Failure probability

7.0 8.0 9.0 10.0

Beta (q=r=1)

Beta (q=r=2)

Interval

Pf (×10-7)

9.49
9.60 9.73

7.0 8.0 9.0 Pf [107]

9.739.49
9.60pdf 1

pdf 2
interval

b(.) = 1.0

Fixed jacket platform

Nopti = 114Npdf = 2000

NPf = 5000

Generalized models for vague and imprecise information

Collaboration with Profs.
Quek Ser Tong
Choo Yoo Sang
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STOCHASTIC SAMPLING
Features

Monte Carlo Simulation methods

generally applicable

high numerical effort

» repeated analysis of
deterministic model

» statistical evaluation
of model response

» high performance computing
» efficient (variance reducing)

sampling schemes

stochastic

deterministic

imprecise
probabilities

implementations to increase
numerical efficiency

developments to further advance
» importance sampling
» subset sampling
» line sampling

in combination with subjective
and imprecise probabilities
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ADVANCED SAMPLING SCHEMES
Line sampling

Monte Carlo Simulation methods

concept
» in the standard normal space

approximate Pf through distances
to the limit state at random locations

 


 

LN
i

f f
i 1

L

1P p
N

ˆ

» build a subspace      perpendicular
to the „important direction“ 

practical implementation

» independent of
▪ dimensionality and
▪ magnitude of Pf


S

» sample in     and find the
distance c(i) to the limit state
at the random points 


S

» estimate Pf as average of the pf
(i)

associated with the c(i)

  


  
LN

i
f

i 1
L

1P c
N

ˆ
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EXAMPLE: RELIABILITY ANALYSIS
Multi-storey building

model

» component failure
reliability analysis

» line sampling
» interval analysis

with global optimization
» distributed computing

» 8,200 finite elements, 66,300 dof
» 244 random variables and 5 intervals (parameters of some rv)

Monte Carlo Simulation methods
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HIGH-DIMENSIONAL PROBLEMS
Advanced Monte Carlo simulation with interval probabilities

global optimization problem

exploit topological properties of  for line sampling

map intervals x to augmented probability space



p – distribution parameters
 – random variables
x – intervals

 
 f

f dx p x
p h p d


  

,
inf ,

 
 f

f d
x p x

p h p d


  
,

sup ,

f depends on intervals x !

X  :   





gsampling direction

   u u up x g  , ,optimal points

 
 u

f

u
f d

x

p h p d


   , ,

   l l lp x g  ,

 
 lf

l
f d

x

p h p d


   ,

  x n x x xx h x        ; ,

Monte Carlo Simulation methods
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EXAMPLE: ROBUST RELIABILITY ASSESSMENT
Multi-storey building – component failure analysis

structure
» 8,200 finite elements,

66,300 dof
» 488 fuzzy parameters for

244 fuzzy random variables

imprecise probabilistic input

± 7.5 %
tolerance range

Monte Carlo Simulation methods
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EXAMPLE: ROBUST RELIABILITY ASSESSMENT
Multi-storey building – results

sensitivity of
failure probability

advanced line sampling with pre-identified optimal points in 

sample size
1,395

safety alerts

≈ 10‒1 !

Pf ≈ 10‒4

Monte Carlo Simulation methods
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RESUMÉ

 advanced stochastic modeling

Monte Carlo simulation methods

Major directions of development

Concepts in Uncertainty Quantification with Engineering Applications

generalized models for vague and imprecise information

combinations

UQ for industry-sized structures and systems

realistic models
efficient numerical analysis

improved design, performance and reliability
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