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Plan of Talk

Discussion of uncertainty in civil engineering

Models of uncertainty

Semantics—interpretation

Axiomatics—properties of aggregation

Multivariate case

Example: Winkler beam, hybrid models of uncertainty

Sensitivity analysis

Remarks
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Modeling Uncertainty in Engineering

reality ←→ correspondence
rules

←→ model

observations semantics state variables
data interpretation parameters

↑ ↓
action ←− computation

Definition and axiomatics: How is uncertainty described
and what are the combination rules?

Numerics: How is uncertainty propagated through the
computational model?

Semantics: What is the meaning of the results – what do
they say about our conception of reality?
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Types of Uncertainties

Model uncertainties:

choice of the structural model

selection of state variables and parameters

choice of limit state function

transitional states during construction

Parameter uncertainties:

random fluctuations

lack of information

random measurement errors

systematic measurement errors

fluctuations due to spatial inhomogeneity

errors made by assigning parameter status to state
variables

parameters carry burden of model insufficiency
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Information—Input vs. Output

Range of available information:

frequency distributions obtained from large samples

values from small samples or single measurements

interval bounds

experts’ point estimates

educated guesses from experience

Failure probability

R : all random variables describing the resistance of a
structure

S : all random variables describing the loads

Limit state function: g(R , S)

Failure probability: pf = P
(
g(R , S) < 0

)
Trouble with pf : Codes require pf = 10−6
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Imprecise Probability Models

Taking the stage in civil engineering in the 1990s:

Interval analysis, set-valued models, fuzzy sets, evidence theory,
random sets, sets of probability measures, imprecise probability,
lower and upper previsions, info-gap-analysis, etc.

Understanding uncertainties:

reflection about the choice of model and the failure
mechanisms;

assessing the variability of input and output variables and
model parameters;

sensitivity analysis;

assessing the reliability of the structure;

decision about acceptance or non-acceptance of the design.

Practical engineering = decision making with the help
of scientific tools!
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Models of Uncertainty—Definitions (1)

a. Deterministic description: The parameter A is described
by a single value a.

a
A

b. Intervals: The uncertainty of the input A is described by
an interval [aL, aR ].

a
L

a
R

A
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Models of Uncertainty—Definitions (2)

c. Probability: The most informative, but also most stringent
description of the uncertainty of a parameter A.

S A

P(A ∈ S) =
∫
S pλ(a) da

The notation pλ indicates that the probability distributions
arise as members of a class of distributions, parametrized by
parameters λ.

Example: N (µ, σ2) with λ = (µ, σ),

pλ(a) =
1√
2πσ

e−
(a−µ)2

2σ2 .
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Models of Uncertainty—Definitions (3)

d. Sets of probability measures: Replace the single measure
by a set of probability measures, a family

M = {pλ : λ ∈ Λ}.

A set of probability measures defines lower and upper
probabilities according to the rules

P(A ∈ S) = inf{P(A ∈ S) : P ∈M},

P(A ∈ S) = sup{P(A ∈ S) : P ∈M}.
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Models of Uncertainty—Definitions (4)

e. Finite random sets (Dempster-Shafer structures):

Focal elements: Subsets Ai , i = 1, . . . , n of a given set A
Probability weights: pi = p(Ai),

∑
pi = 1.

Upper/lower probability (plausibility/belief) of an event S :

P(S) =
∑

Ai∩S 6=∅

pi , P(S) =
∑
Ai⊂S

pi

Contour function: a→ P({a})
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Models of Uncertainty—Definitions (4)

e. Finite random sets (Dempster-Shafer structures):

Focal elements: Subsets Ai , i = 1, . . . , n of a given set A
Probability weights: pi = p(Ai),

∑
pi = 1.

Upper/lower probability (plausibility/belief) of an event S :

P(S) =
∑

Ai∩S 6=∅

pi , P(S) =
∑
Ai⊂S

pi

Probability box: F (b) = P(−∞, b], F (b) = P(−∞, b]
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Models of Uncertainty—Definitions (5)

f. Tchebycheff random sets:

Nonparametric representation of random quantity with mean µ
and variance σ2, from

P
(
|a − µ| > d(α)

)
≤ α with d(α) = σ/

√
α

as uniformly distributed random set on 0 < α ≤ 1:

α→ A(α) = [µ− d(α), µ + d(α)]

µ = 10, σ = 1. Interpretation: piled confidence intervals.
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Models of Uncertainty—Definitions (6)

g. Fuzzy sets: A fuzzy set A as a family of parametrized
intervals Aβ ⊂ Aα, 0 ≤ α ≤ β ≤ 1 (left),

or as a membership function, assigning to each real number a
a value πA(a) ∈ [0, 1] (right).

Intervals correspond to α-level sets Aα = {a : πA(a) ≥ α}.

One can introduce a possibility measure on the real line,
defining a degree of possibility for each subset by

πA(S) = sup{πA(a) : a ∈ S}.
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Semantics (1)

a. Probability: The most prevalent and important semantics
in engineering practice are:

1. Classical probability, based on principles like the principle
of non-sufficient reason would determine the probability of
an event S as the fraction of favorable cases among the
possible cases.

2. Frequentist probability, based on the idea of random
occurrence of an event in a sequence of independent
trials, would approximate the probability of an event S by
its relative frequency.

3. Subjective probability is meant to be a measure of
personal confidence. It can be assessed by introspection
and/or elicitation through experts.
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Semantics (2)

b. Sets of probability measures: Arising in the frequentist
setting in the context of confidence and tolerance intervals
(distribution parameters varying in intervals).

Robust statistics is based on distributions neighboring a given
distribution.

In Bayesian statistics, families of prior distributions have been
employed (robust Bayesian methods), as well as fuzzy prior
distributions.

c. Random sets as sets of probability measures: Denote
by M(Ai) the totality of all probability measures living on Ai .

The set of probability measures induced by the random set is

M = {P : P =
∑

m(Ai)Pi ,Pi ∈M(Ai)}.

The respective notions of lower and upper probability coincide.
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Semantics (3)

d. Fuzzy sets: The idea of possibility provides an
interpretation for a fuzzy set and an operational method of
constructing it.

Introduce a scale 0 ≤ α ≤ 1 of risk levels specified verbally by
the designing engineer.

Plot the ranges of fluctuation of the modeled parameter by
intervals at their risk level.

Join endpoints to obtain the membership function.
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Random Sets as Unifying Framework

Every normalized fuzzy number can be seen as a random set;
the sets A(α) are just the α-level sets.

Any random variable X can be reconstructed as a random set
on [0, 1] by putting A(α) = F−1

X (α).
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Axiomatics

The axioms fix the algebraic properties of the corresponding
set functions.

Probability measures—additive set functions:

p(S ∪ T ) = p(S) + p(T )− p(S ∩ T ) .

Possibility measures—maxitive set functions:

π(S ∪ T ) = max{π(S), π(T )} .

Plausibility measures (include probability and possibility):

η(S ∪ T ) ≤ η(S) + η(T )− η(S ∩ T ) .

Monotone set functions (include all):

µ(S ∪ T ) ≥ max{µ(S), µ(T )} .
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Part of the Hierarchy

Focal elements
singletons

Focal elements
consonant

Focal elements
arbitrary

Probability measures
P(S T) = P(S) + P(T) – P(S T)

Fuzzy sets
p(a) = p({a})
p(S) = sup {p(a): a є S}

Possibility measures
p(S T) = max {p(S), p(S) }

Plausibility measures
h(S T) £ h(S) + h(T) – h(S T)

Monotone set functions
m(S T) ³ max {m(S), m(S)}
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The Multivariate Case (1)

A = (A1, . . . ,An) . . . in principle, as before.

But: Modeling mutual dependence, correlation, interaction.

Probability theory: Two random variables are independent
when their joint distribution function is the product of the
individual (marginal) distribution functions.

Interval analysis: Two parameters taking interval values are
non-interactive when their joint range is the product interval
(a rectangle), and interactive when their joint range is a
proper subset of the product interval.

Fuzzy sets are non-interactive
if their α-level sets are
rectangles. Interactivity can be
modeled by parametric
restrictions on the α-level sets.

Positive/negative interactivity.
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The Multivariate Case (2)

Random sets: The concept of independence splits up.

Random set independence: the joint focal sets are product
intervals, and the joint weights are the products of the
corresponding marginal weights.

Strong independence: The underlying set of joint probability
measures consists of product measures only.

Fuzzy set independence: Product intervals from equal α-levels.

Modeling dependence by copulas: A copula C (u, v) is a
multivariate distribution function with uniform marginals.

Reconstructing a joint distribution FXY (x , y) of two random
variables from the marginals:

FXY (x , y) = C (FX (x),FY (y)).

Application to random sets: Prescribing correlations on the
basic probability weights by means of parametric copulas.
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Simple Example: Winkler Beam (1)

From: V. Bolotin, Statistical Methods in Structural Mechanics. San Francisco: Holden-Day 1969, Section 61.

Equation for the displacement u(x):

EI uIV (x) + bc u(x) = q(x), −∞ < x <∞ ,

EI . . . flexural rigidity of beam b . . . effective width
c . . . bearing coefficient of foundation q(x) . . . loading
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Simple Example: Winkler Beam (2)

Standardized equation:

uIV (x) + 4k4u(x) = p(x), −∞ < x <∞

with bc/EI = 4k4, p(x) = q(x)/EI .

Unique deterministic solution:

u(x) =
1

8k3

∫ ∞
−∞

e−k|x−y |( sin k |x − y |+ cos k |x − y |
)

p(y) dy

This is the I-O-map used in Monte Carlo simulations.

Deterministic reference case:

q(x) ≡ q = 10 [N/cm], EI = 109 [Ncm3],

b = 6 [cm], c = 6.7 [N/cm3], whence bc ≈ 40 [N/cm2].
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Random Field Model

Assumption: bc = 40 [N/cm2] deterministic; load as a random
field q(x , α) with mean µq = 10, field variance σ2

q = 4,
correlation length ` = 1000 [cm]. Autocorrelation function:

corr(ρ) = exp
(
− |ρ|/`

)
.

Computation of maximal bending moment by Monte Carlo
simulation, N = 5000 trajectories, Mmax = max(EIu′′(x)):
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Oberguggenberger (University of Innsbruck) REC 2016 Bochum June 15, 2016 24 / 30



Random Fields & Imprecise Probability

Load as a random field q(x , α) as above, coefficient bc as a
Gaussian random variable with mean µbc = 40 and
interval-valued standard deviation [σbc , σbc ] = [4, 12].

(This results from a spread of ±50% around the nominal value σbc = 8 deriving

from a coefficient of variation of 20%.)

Solution – the set-valued stochastic process

U(x , α) = {u(x , α, σbc) : σbc ∈ [4, 12]}.
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Imprecise Random Fields & Probability

Load q(x , α) as set-valued random field, coefficient bc as
imprecise Gaussian random variable:

Fixed:
µbc = 40, µq = 10

Intervals:

[σbc , σbc ] = [4, 12], [σq, σq] = [1, 3], [`, `] = [500, 1500]
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P-box for maximal bending moment with with imprecise bc and q.
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Sensitivity Analysis

Determining the degree of influence of individual input
variables on the output

Sampling based methods

Successive pinching of variables and observing change of
variability of output

Random set approach using p-box requires no additional
computational cost

Quantification by information theoretic concepts, e.g. the
Hartley-like measure

HL =

∫ 1

0

log2

(
1 + F−1(α)− F

−1
(α)
)

dα

applied to the p-box.
This follows a suggestion of George Klir.
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Sensitivity Analysis – Results

σbc pinched, σq and ` intervals
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Random Set Modeling

Choice of model, depending on available information:

Single variable

available information model of uncertainty

upper/lower bounds interval
value of mean and variance Tchebycheff random set
type, value of mean and variance probability distribution
type, bounds for mean and variance imprecise probability distribution

Field variable

available information model of uncertainty

type, value of mean, variance, correlation random field
type, bounds for mean, variance, correlation set-valued random field
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Conclusion and Outlook

Random sets as unifying framework

Probability and intervals on various levels

Numerics: Monte Carlo simulation,
reweighting, surrogate models

Alternative: sets of probability measures;
gives tighter bounds
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