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PLAN OF TALK

e Discussion of uncertainty in civil engineering
e Models of uncertainty

e Semantics—interpretation

e Axiomatics—properties of aggregation

o Multivariate case

Example: Winkler beam, hybrid models of uncertainty

Sensitivity analysis

Remarks
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MODELING UNCERTAINTY IN ENGINEERING

. correspondence
reality — P model
rules
observations semantics state variables
data interpretation parameters
action — computation

e Definition and axiomatics: How is uncertainty described
and what are the combination rules?

e Numerics: How is uncertainty propagated through the
computational model?

e Semantics: What is the meaning of the results — what do
they say about our conception of reality?
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TYPES OF UNCERTAINTIES

Model uncertainties:

e choice of the structural model

e selection of state variables and parameters
e choice of limit state function

e transitional states during construction

Parameter uncertainties:
e random fluctuations
lack of information
random measurement errors

fluctuations due to spatial inhomogeneity

errors made by assigning parameter status to state
variables

parameters carry burden of model insufficiency

"]
"]
e systematic measurement errors
"]
"]
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INFORMATION—INPUT VS. OUTPUT

Range of available information:
e frequency distributions obtained from large samples
e values from small samples or single measurements

interval bounds

experts’ point estimates

educated guesses from experience
Failure probability

e R: all random variables describing the resistance of a
structure

e S: all random variables describing the loads
o Limit state function: g(R,S)
o Failure probability: pr = P(g(R, S) < O)

e Trouble with ps: Codes require ps = 10°°
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IMPRECISE PROBABILITY MODELS

Taking the stage in civil engineering in the 1990s:

Interval analysis, set-valued models, fuzzy sets, evidence theory,
random sets, sets of probability measures, imprecise probability,
lower and upper previsions, info-gap-analysis, etc.

Understanding uncertainties:

o reflection about the choice of model and the failure
mechanisms;

@ assessing the variability of input and output variables and
model parameters;

@ sensitivity analysis;

@ assessing the reliability of the structure;

@ decision about acceptance or non-acceptance of the design.

Practical engineering = decision making with the help
of scientific tools!
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MODELS OF UNCERTAINTY—DEFINITIONS (1)

a. Deterministic description: The parameter A is described
by a single value a.

@ » A
a

b. Intervals: The uncertainty of the input A is described by
an interval [a,, ag].
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MODELS OF UNCERTAINTY—DEFINITIONS (2)

c. Probability: The most informative, but also most stringent
description of the uncertainty of a parameter A.

/L P(A€ S) = [sp(a) da
A

| S
The notation p, indicates that the probability distributions
arise as members of a class of distributions, parametrized by
parameters .

Example: N'(i,0%) with A = (i, o),

1 (a—p)?
px(a) = e
210
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MODELS OF UNCERTAINTY—DEFINITIONS (3)

d. Sets of probability measures: Replace the single measure
by a set of probability measures, a family

./\/l:{p,\:/\E/\}.

A set of probability measures defines lower and upper
probabilities according to the rules

P(Ae S)=inf{P(A€S): Pe M},
P(Ac S)=sup{P(Ac S): Pc M}.
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MODELS OF UNCERTAINTY—DEFINITIONS (4)

e. Finite random sets (Dempster-Shafer structures):

Focal elements: Subsets A;,i = 1,...,n of a given set A
Probability weights: p; = p(A;), > pi = 1.

Upper/lower probability (plausibility/belief) of an event S:

P(S)= > p, POS)=)_p

A;NSAD AiCS

Contour function: a — P({a})
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e. Finite random sets (Dempster-Shafer structures):

Focal elements: Subsets A;,i = 1,...,n of a given set A
Probability weights: p; = p(A;), > pi = 1.

Upper/lower probability (plausibility/belief) of an event S:

P(S)= > p, POS)=)_p

A;NSAD AiCS

Probability box: F(b) = P(—o0, b], F(b) = P(—o0, b]
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MODELS OF UNCERTAINTY—DEFINITIONS (5)

f. Tchebycheff random sets:

Nonparametric representation of random quantity with mean p
and variance o2, from

P(la—p| > d(a)) <a with d(a)=0/Va
as uniformly distributed random set on 0 < o < 1:
a— Ala) = [n—d(a), p+ d(a)]

-
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1 =10, 0 = 1. Interpretation: piled confidence intervals.
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MODELS OF UNCERTAINTY—DEFINITIONS (6)

g. Fuzzy sets: A fuzzy set A as a family of parametrized
intervals A C A%, 0 < a < 8 <1 (left),

or as a membership function, assigning to each real number a
a value ma(a) € [0, 1] (right).

Intervals correspond to a-level sets A* = {a: ma(a) > a}.

1 T
B
o : (@) |
AP "
' ] A : - - A

A% a

One can introduce a possibility measure on the real line,
defining a degree of possibility for each subset by

wa(S) = sup{ma(a) : a € S}.
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SEMANTICS (1)

a. Probability: The most prevalent and important semantics
in engineering practice are:

1. Classical probability, based on principles like the principle
of non-sufficient reason would determine the probability of
an event S as the fraction of favorable cases among the
possible cases.

2. Frequentist probability, based on the idea of random
occurrence of an event in a sequence of independent
trials, would approximate the probability of an event S by
its relative frequency.

3. Subjective probability is meant to be a measure of

personal confidence. It can be assessed by introspection
and/or elicitation through experts.
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SEMANTICS (2)

b. Sets of probability measures: Arising in the frequentist
setting in the context of confidence and tolerance intervals
(distribution parameters varying in intervals).

Robust statistics is based on distributions neighboring a given
distribution.

In Bayesian statistics, families of prior distributions have been
employed (robust Bayesian methods), as well as fuzzy prior
distributions.

c. Random sets as sets of probability measures: Denote
by M(A;) the totality of all probability measures living on A;.

The set of probability measures induced by the random set is
M={P:P =) m(A)P;,P € M(A)}.

The respective notions of lower and upper probability coincide.
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SEMANTICS (3)

d. Fuzzy sets: The idea of possibility provides an
interpretation for a fuzzy set and an operational method of
constructing it.

Introduce a scale 0 < a <1 of risk levels specified verbally by
the designing engineer.

Plot the ranges of fluctuation of the modeled parameter by
intervals at their risk level.

Join endpoints to obtain the membership function.

1 o /\ ................. standard value
DfF | \ ‘‘‘‘‘‘‘‘‘‘‘‘‘‘ high risk
1< | B . Y ——— medium risk

low risk
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RANDOM SETS AS UNIFYING FRAMEWORK

Every normalized fuzzy number can be seen as a random set;
the sets A(«) are just the a-level sets.

Any random variable X can be reconstructed as a random set
on [0,1] by putting A(a) = Fx'(a).

> o =

Aa)

o o o o
iy

cumulative probability
N

o
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AXIOMATICS

The axioms fix the algebraic properties of the corresponding
set functions.

Probability measures—additive set functions:
p(SUT)=p(S)+p(T)—p(SNT).
Possibility measures—maxitive set functions:
7(SUT) = max{n(S),n(T)}.
Plausibility measures (include probability and possibility):
n(SUT)<n(S)+n(T)=n(SNT).
Monotone set functions (include all):

p(SUT) = max{u(S), i(T)} -

Oberguggenberger (University of Innsbruck) REC 2016 Bochum June 15, 2016



PART OF THE HIERARCHY

Focal elements Probability measures
singletons P(SAT) = P(S) + P(T) = P(SUT)
Focal elements Possibility measures Fuzzy sets
consonant 7(SUT) = max {(S), 7(S) } <:> n(a) = m({a})

ﬁ 7(S) = sup {m(a): ae S}
FOC_aI elements Plausibility measures
Ll N(SAT) <(S) +1(T) =N(SUT)

l

Monotone set functions
K(SUT) = max {W(S), (S)}
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THE MULTIVARIATE CASE (1)

A:(Al,...

But: Modeling mutual dependence, correlation, interaction.

,Ap) ... in principle, as before.

Probability theory: Two random variables are independent
when their joint distribution function is the product of the
individual (marginal) distribution functions.

Interval analysis: Two parameters taking interval values are
non-interactive when their joint range is the product interval
(a rectangle), and interactive when their joint range is a
proper subset of the product interval.

Fuzzy sets are non-interactive )
if their a-level sets are
rectangles. Interactivity can be
modeled by parametric
restrictions on the a-level sets.

0 1 0 1

Positive/negative interactivity.
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THE MULTIVARIATE CASE (2)

t.math

Random sets: The concept of independence splits up.

Random set independence: the joint focal sets are product
intervals, and the joint weights are the products of the
corresponding marginal weights.

Strong independence: The underlying set of joint probability
measures consists of product measures only.

Fuzzy set independence: Product intervals from equal a-levels.

Modeling dependence by copulas: A copula C(u, v) is a
multivariate distribution function with uniform marginals.

Reconstructing a joint distribution Fxy(x, y) of two random
variables from the marginals:

Fxy(x,y) = C(Fx(x), Fy(y))-

Application to random sets: Prescribing correlations on the
basic probability weights by means of parametric copulas.
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SIMPLE EXAMPLE: WINKLER BEAM (1)

|/ c(x) wix)

\-,1
z
From: V. Bolotin, Statistical Methods in Structural Mechanics. San Francisco: Holden-Day 1969, Section 61.

Equation for the displacement u(x):
El u" (x) + bc u(x) = q(x), —o0 < x < 00,

El ... flexural rigidity of beam b... effective width
c ... bearing coefficient of foundation q(x) ... loading
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SIMPLE EXAMPLE: WINKLER BEAM (2)

Standardized equation:
u" (x) + 4k*u(x) = p(x), —o0 < x < 0

with bc/El = 4k*, p(x) = q(x)/El.

Unique deterministic solution:

1 [
u(x):%/ ek y‘(smk|x—y|+cosk|x—y|)p(y)dy

This is the I-O-map used in Monte Carlo simulations.

Deterministic reference case:
g(x) = g =10 [N/cm], EI = 10° [Necm?],
b =6 [cm], c = 6.7 [N/cm?], whence bc = 40 [N/cm?].
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RANDOM FIELD MODEL

Assumption: bc = 40 [N/cm?] deterministic; load as a random
field g(x, o) with mean pq = 10, field variance 03 =4,
correlation length ¢ = 1000 [cm]. Autocorrelation function:

corr(p) = exp (— |p|/£).

Computation of maximal bending moment by Monte Carlo
simulation, N = 5000 trajectories, My,.x = max(Elu"(x)):

- 1
_ 1000 ]
E 500 £ o8
= Z 06
E
g 0 2 04
g -500 3
£ 2 02
-1000 3
-1000 -500 0 500 1000 0 2500 5000 7500 10000
position [cm] maximal moment [Ncm]

Bending moment (trajectory), maximal bending moment (simulated cumulative
distribution).
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RANDOM FIELDS & IMPRECISE PROBABILITY

Load as a random field g(x, ) as above, coefficient bc as a
Gaussian random variable with mean p,. = 40 and
interval-valued standard deviation [0, 75| = [4,12].

(This results from a spread of +50% around the nominal value opc = 8 deriving

from a coefficient of variation of 20%.)

Solution — the set-valued stochastic process

U(x, @) = {u(x,a,0pc) : ope € [4,12]}.

4000 1
— x 0.8
£ 2000 8
Z 206
1 3
g 0 T 0.4
; :
15 S 02
-2000
0
-1000 -500 0 500 1000 0 2500 5000 7500 10000
position [cm] maximal moment [Ncm]
Bending moment (interval trajectory), maximal bending moment (p-box).
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IMPRECISE RANDOM FIELDS & PROBABILITY

Load g(x, «) as set-valued random field, coefficient bc as
imprecise Gaussian random variable:

Fixed:

Kb = 40, ,U,q =10
Intervals:
[0pe: Tbc] = [4,12], [o,,04 =[1,3], [£ €] = [500,1500]

[,

o o o o
N D o @

probability box

o

0 2500 5000 7500 10000
maximal moment [Ncm]

P-box for maximal bending moment with with imprecise bc and gq.
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SENSITIVITY ANALYSIS

e Determining the degree of influence of individual input
variables on the output

e Sampling based methods

e Successive pinching of variables and observing change of
variability of output

e Random set approach using p-box requires no additional
computational cost

e Quantification by information theoretic concepts, e.g. the
Hartley-like measure

1
HL:/ log, <1+£71(a)—f
0

applied to the p-box.

This follows a suggestion of George Klir.
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SENSITIVITY ANALYSIS — RESULTS
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RANDOM SET MODELING

Choice of model, depending on available information:

Single variable

available information model of uncertainty
upper/lower bounds interval

value of mean and variance Tchebycheff random set

type, value of mean and variance probability distribution

type, bounds for mean and variance | imprecise probability distribution

Field variable

available information model of uncertainty

type, value of mean, variance, correlation random field
type, bounds for mean, variance, correlation | set-valued random field
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CONCLUSION AND OUTLOOK

o Random sets as unifying framework
o Probability and intervals on various levels

o Numerics: Monte Carlo simulation,
reweighting, surrogate models

o Alternative: sets of probability measures;
gives tighter bounds
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