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We need distributions

Risk analyses

Safety assessments
Reliability analysis
Environmental models
Financial forecasts
Uncertainty modeling



Problem: selecting distributions

« How should we chose a distribution given
limited sample or constraint information?

« And what should we do when the available
data and tenable assumptions do not specify
a single distribution to use?



Many ways to fit distributions to data

« Maximum entropy

« Maximum likelthood

 Bayesian inference

« Method of matching moments —22!#?8?
« Goodness of fit (KS, AD, y?, etc.)

« PERT

» Regression techniques

« Empirical distribution functions
...1n fact there are even more methods...



Little coherence In practice

Disparate methods used across risk analysis

Common to mix and match distributions with
different justifications

Analyses are thus based on no clear criterion or
standard of performance

Is this okay?



Two related problems

 Estimating the distribution for x-values
— Observable values

 Estimating parameters for the x-distribution
— Unobservable guantities

 \We need solutions for both problems



Frequentist confidence intervals

Favored by many engineers
Guarantees statistical performance over time
But difficult to employ consistently in analyses

Not clear how to propagate them through
mathematical calculations



Bayesian approaches

 Permit mathematical calculations

 But lack guarantees ensuring long-run
statistical performance

» Many engineers are reluctant to use
Bayesian methods



Confidence distributions

* Not widely used in engineering or statistics
* Introduced by Cox In the 1950s

 Closely related to other better-known ideas
— Student’s t-distribution
— Bootstrap distributions



Confidence distributions

 Distributional estimators of (fixed) parameters
 Give confidence interval at any confidence level
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Confidence interval

A confidence interval with coverage o

In replicate problems, a proportion « of computed
confidence intervals will enclose the true value

 Using methods to compute confidence
Intervals thus ensures statistical performance



Confidence distributions

Have the shape of a distribution
But correspond to no random variables
Not supposed to compute with them

Don’t always exist (e.g., for the binomial rate)



Confidence structures (c-boxes)

Generalization of confidence distributions
Reflect inferential uncertainty about parameter

Known for many cases

— binomial rate and other discrete parameters
— normals, and many other problems
— non-parametric case

Still have performance/confidence interpretation



Confidence interpretation
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Estimators

Point estimates
Interval estimates
Distributional estimates

P-box estimates



Binomial rate p for k of n trials
p ~ env(beta(k, n—k+1), beta(k+1, n—k))

Data
k=2
n=10
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How does the Bayes analysis compare?

* No such thing as the Bayes analysis

» There are always many possible analyses
— Different priors, which yield different answers
— When data sets are small, the differences are big

 For binomial rate there are four or five priors
Bayesians have not been able to chose among



Probability density

Prior
Haldane
Jeffreys
Zellner

Bayes-Laplace

Walley

0.2

04 06
Probability

0.8




Probability density

Mean Prior
0.2 Haldane
0.227 Jeffreys
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Cumulative probability

The c-box includes all
posteriors based on the
traditional priors
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Example: normal mean

Data
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Example: normal mean
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Deriving c-boxes

« Have to be derived for each distribution shape
 Traditional approaches based on pivots

« Many solutions have been worked out

pinomial(p, n), given n normal(u, o)
pinomial(p, n), given p lognormal(pn, o)
pinomial(p, n) gamma(a, b)

_30isson(p) _exponential(k)



Example: non-parametric problem

X~ [(1+C(x))/(1+n), C(x)/(1+n)]
where C(x) = #(X; <X)

Data
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Captured uncertainties

Uncertainty about distribution shape
Sampling uncertainty (from small n)
Measurement incertitude (£, censoring)

Demographic stochasticity (integrality of data)



Propagated as probability boxes

* C-boxes can be combined in mathematical
expressions using the p-box technology

 Results also have performance interpretations

» C-boxes can also make predictive p-boxes



Prediction structures

« C-boxes can model the uncertainty about the
underlying distribution that generated the data

 This Is a composition of the c-box through the
probability model to make a p-box

o Stochastic mixture of p-boxes from interval
parameters specified by slices from the c-box



Example: Bernoulli distribution

Bernoulli( )
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Each interval slice defines a p-box for the underlying
distribution (rather than a precise distribution)



Cumulative probability
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Beta-binomial predictive p-box
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Prediction structures are p-boxes

 Also have confidence interpretation

— Results are prediction intervals enclosing specified
percentage of observable values, on average

 Can also define analogous tolerance structures

— Tolerance Intervals are X% sure to enclose Y% of
the population



Computing with c-boxes directly

1 1
g O lm—m—" 0l
O 020406081 O 020406081 0O 020406081
Plan A Plan B Plan C
25% fail 39 out of 60 failed 17 out of 20 failed

What If we used all three plans independently?
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Summary for c-boxes

Confidence boxes carry inferential uncertainties
through mathematical operations

Give confidence intervals on results at any o level

Defined by performance, so not unique
— Just as confidence intervals are not unigue
— May create some flexibility

Don’t seem to be overly conservative
— Elaborate simulation studies have so far not found this



Applies even with zero data

* There may be no sample data at all

« If constraints are known that specify a rigorous
p-box, then it encodes prediction intervals

« So our performance interpretation applies for
— Parametric problems
— Nonparametric problems
— No data problems



Maximum Maximum
likelithood entropy

Bayesian Estimation EXxpert
Inference elicitation

Method of PERT
moments



Conclusions
C-boxes characterize risk analysis inputs given
limited sample or constraint information

Reasonable answers when data and tenable
assumptions don’t justify particular distributions

C-boxes don’t optimize; they perform

C-boxes could serve as the lexicon in a language
of risk analysis



C-boxes are Bayesian

 Under robust Bayes approach, c-boxes can be
thought of as Bayesian posteriors

— Don’t require specification of a unique prior
— Have added feature of statistical performance
— Imply posterior predictive distributions

— Compatible with specifying a robust or precise
prior when that’s desirable



A single c-box or prediction box

» EXxpresses confidence (prediction) intervals at
all possible o levels

* Including central, high-density, two-sided and
left- or right-sided intervals at any desired level

* So you don’t have to decide in advance which
probability level or which kind you want



Vesely’s tank *
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Vesely’s pressurized tank

tank T _ relay K2 | pressure switch S
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Top event tank rupture under pressurization E1

Has the
performance
Interpretation
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# Vesely's pressurized tank system from sparse sample data assuming independence
many = 10000
constant <- function(b) if (length(b)==1) TRUE else FALSE
precise <- function(b) if (length(b)==many) TRUE else FALSE
leftside <- function(b) if (precise(b)) return(b) else return(b[1:many])
rightside <- function(b) if (precise(b)) return(b) else return(b[(many+1):(2*many)])
sampleindices = function() round(runif(many)*(many-1) + 1)
pairsides <- function(b) {i=sampleindices(); return(env(leftside(b)[i],rightside(b)[i]))}
env <- function(x,y) if ((precise(x) && precise(y))) c(x,y) else stop(‘env error’)
beta <- function(v,w) if ((v==0) && (w==0)) env(rep(0,many),rep(1,many)) else

if (v==0) rep(0,many) else if (w==0) rep(1,many) else sort(rbeta(many, v, w))
kn <- function(k,n) return(pairsides(env(beta(k, n-k+1), beta(k+1, n-k))))

orl <- function(x,y) return(1-(1-x)*(1-y))
andI <- function(x,y) return(x*y)

t = kn(0, 2000)
k2 = kn(3, 500)

s = kn(1, 150)

sl = kn(0, 460)
k1 = kn(7, 10000)
r = kn(0, 380)

el = orl(t, orI(k2, andI(s, orI(s1, orI(kl, r)))))



Northeast Blackout of 2003

55 million people affected

Second only to the Southern Brazil Blackout
of 1999 as the most widespread in history

Traced to a software bug in‘a control room
alarm system in Ohio

A national Electric Reliability Organization
was created In the aftermath



United States
transmission grid
Source: FEMA
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Rare event probabilities

« Hardly ever any actual data
« Sometimes we have experts
« But how should we model bald assertions?

— “1 1n 10007
— ““1 1n ten million™

— “Never been seen in 100 years”



One out of 10X trials

“one corner’”’

1bk—1



Zero out of 10X trials

“zero corner’”’

8x 10k



Risk communication with the
“equivalent binomial count”
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Match a calculated risk to a c-box

Risk
k-n c-box

Confidence

0 1
Probabillity



Equivalent binomial count

An imprecisely computed risk can be expressed
as a p-box over [0,1]

This p-box can be transformed into a natural
language statement of the form “ k out of n >

These are natural frequencies
— Large uncertainties imply small denominators
— Or even Interval numerators If very large

People can understand them



Confidence

PPV

The chance the patient is sick
1511 to 12 out of 12

= PPV
= EBC

Probability

Confidence

NPV

The chance the patient is well
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Amazon Mechanical Turk

» Check preference for identical sunglasses rated
by other buyers using various schemes

— More frequent ‘excellent’ ratings should be better
— Larger pool of buyers rating should be more reliable

 Testing whether
— Turkers can make rational choices
— Natural frequencies are as good as percentages
— Larger denominators convey more reliability
— Interval numerators can be understood



Which product is better?

 Based on the reviews left by previous customers, which product would you buy?
 Use only the customer ratings and the number of stars left by customers to guide your
decision.

Pair A was rated excellent by 50% of customers rated Pair B as
2 out of 4 customers. excellent.

Which product would you buy? Pair A, or Pair B?
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Confidence boxes

o Structures that let you infer confidence intervals
for a parameter, at any confidence level

 Can be propagated just like p-boxes

 Allow us to compute with confidence



Next steps

* How to Incorporate other constraint
Information besides the distribution shape

 Big, multi-parameter problems

» C-box approach for estimating copulas



More information

https://sites.google.com/site/confidenceboxes
https://sites.google.com/site/reliabilityuncertainty
 Papers

» Slide presentations

 Free software

Google “confidence boxes”



Confidence boxes

Introduction [ Slide shows [ Software § Challenge problems J| Compare with Bayes and ML || Compare with Imprecise Beta Model

Monparametric difference | Theory || Other pages

Computing with Confidence

Confidence boxes ("c-boxes") tell you confidence intervals for a parameter at any confidence level you like. For instance, the confidence box depicted below yields several
confidence intervals for the parameter 8. Although you can't generally compute with confidence intervals, you can compute with confidence boxes, and you can get
arbitrary confidence intervals for the results.
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95% c.i. 50%c.i. one-sided 95% c.i.

Confidence boxes can be computed in a variety of ways directly from random sample data. There are confidence boxes for both parametric problems where the family of
the underlying distribution from which the data were randomly generated is known (including normal, lognormal, exponential, binomial, Poisson, etc.), and nonparametric
problems in which the shape of the underlying distribution is unknown. Confidence boxes account for the uncertainty about a parameter that comes from the inference
from observations, including the effect of small sample size, but also the effects of imprecision in the data and demographic uncertainty which arises from trying to
characterize a continuous parameter from discrete data observations.

When confidence boxes have the form of probability boxes, they can be propagated through mathematical expressions using the ordinary machinery of probability bounds
analysis, and this allows analysts to compute with confidence, both figuratively and literally, because the results also have this confidence interpretation.

This website is a portal to several papers and presentations about confidence boxes, including

Slide presentations and posters,

Introductory paper on c-boxes with R functions and a comparison with the Imprecise Beta Model,

Paper with several c-box formulas and a comparison between c-box results and analogous Bayesian and maximum likelihood results,
Application of c-boxes in common inference problems arising in risk analysis,

Application of the c-box for nonparametric difference in a calibration/validation study,

Original paper on confidence structures, and

Review paper on confidence distributions; another one.

NEUhws

Confidence boxes are imprecise generalizations of traditional confidence distributions. Like Student's £ distribution, they encode frequentist confidence intervals for
parameters of interest at every confidence level. They are analogous to Bayesian posterior distributions in that they characterize the inferential uncertainty about
distribution parameters estimated from sparse or imprecise sample data, but they have a purely frequentist interpretation that makes them useful in engineering because
they offer a guarantee of statistical performance through repeated use. Unlike traditional confidence intervals which cannot usually be propagated through mathematical
calculations, c-boxes can be used in calculations to yield results that also admit the same confidence interpretation. For instance, they can be used to compute probability
boxes for both prediction and tolerance distributions. They are easy to construct and use in calculations; see the software page for R functions to construct several c-
boxes.

Note that c-boxes are completely different from confidence bands such as the Kolmogorov-Smirnov distributional bands which are nonparametric confidence limits at some
particular confidence level for the distribution from which sample data were randomly drawn. C-boxes encode confidence intervals at all possible confidence levels at the
same time.
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Confidence boxes

About

This site collects papers describing
the use of statistical confidence
structures in risk analysis.
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Questions?
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Stopping rule

» C-boxes can depend on the stopping rule

— But not knowing the stopping rule may just mean
the c-box Is wider

— Knowing the stopping rule tightens the c-box



