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We need distributions

• Risk analyses

• Safety assessments

• Reliability analysis

• Environmental models

• Financial forecasts

• Uncertainty modeling 



Problem: selecting distributions

• How should we chose a distribution given 

limited sample or constraint information?

• And what should we do when the available 

data and tenable assumptions do not specify 

a single distribution to use?



Many ways to fit distributions to data

• Maximum entropy

• Maximum likelihood

• Bayesian inference

• Method of matching moments

• Goodness of fit (KS, AD, 2, etc.)

• PERT

• Regression techniques

• Empirical distribution functions

…in fact there are even more methods…

still most 
common



Little coherence in practice

• Disparate methods used across risk analysis

• Common to mix and match distributions with 

different justifications

• Analyses are thus based on no clear criterion or 

standard of performance

• Is this okay?



Two related problems

• Estimating the distribution for x-values

– Observable values

• Estimating parameters for the x-distribution

– Unobservable quantities

• We need solutions for both problems



Frequentist confidence intervals

• Favored by many engineers 

• Guarantees statistical performance over time

• But difficult to employ consistently in analyses 

• Not clear how to propagate them through 

mathematical calculations



Bayesian approaches

• Permit mathematical calculations

• But lack guarantees ensuring long-run 

statistical performance

• Many engineers are reluctant to use 

Bayesian methods



Confidence distributions

• Not widely used in engineering or statistics

• Introduced by Cox in the 1950s

• Closely related to other better-known ideas

– Student’s t-distribution

– Bootstrap distributions



Confidence distributions

• Distributional estimators of (fixed) parameters

• Give confidence interval at any confidence level
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Confidence interval

• A confidence interval with coverage 

In replicate problems, a proportion  of computed 

confidence intervals will enclose the true value 

• Using methods to compute confidence 

intervals thus ensures statistical performance



Confidence distributions

• Have the shape of a distribution

• But correspond to no random variables

• Not supposed to compute with them

• Don’t always exist (e.g., for the binomial rate)



Confidence structures (c-boxes)

• Generalization of confidence distributions

• Reflect inferential uncertainty about parameter

• Known for many cases

– binomial rate and other discrete parameters

– normals, and many other problems

– non-parametric case

• Still have performance/confidence interpretation
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Estimators

• Point estimates (e.g., sample mean)

• Interval estimates (e.g., confidence intervals)

• Distributional estimates (Bayesian posteriors)

• P-box estimates (e.g., c-boxes)



Binomial rate p for k of n trials
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k = 2

n = 10

p ~ env(beta(k, nk+1), beta(k+1, nk))

If 1 = , result is identical to classical ClopperPearson interval



How does the Bayes analysis compare?

• No such thing as the Bayes analysis

• There are always many possible analyses

– Different priors, which yield different answers

– When data sets are small, the differences are big

• For binomial rate there are four or five priors 

Bayesians have not been able to chose among



k=2; n=10
par(mfrow=c(1,1))
# plots of the prior densities
steps = 1000
x = 0:steps/steps

# priors
plot(NULL, xlim=c(0,1),ylim=c(0,2),xlab='p',ylab='Probability density') 
y=1.6186*x^x*(1
y=dbeta(x,0.5,0.5); sum(y[is.finite(y)]); lines(x,y,lwd=4,col='blue') # Jeffreys, Perks, Box&Tiao, Bernardo
y=dbeta(x,2,2); sum(y[is.finite(y)]); lines(x,y, lwd=4,col='gray') # Walley no tails
y=dbeta(x,1,1); sum(y[is.finite(y)]); lines(x,y, lwd=4,col='black')  # Bayes
y=dbeta(x,0.00005,0.00005); sum(y[is.finite(y)]); lines(x,y, lwd=4,col='darkgreen'); lines(c(1,1),c(0.02,2.1), lwd=4,col='dar
Jaynes, Villegas
#y=x^(

# posterior density distributions
plot(NULL, xlim=c(0,1),ylim=c(0,4),xlab='p',ylab='Probability density') 
y=dbeta(x,0.5+k,0.5+n
y=dbeta(x,2+k,2+n
y=dbeta(x,1+k,1+n
y=dbeta(x,k+0.00005,n
# Zellner
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posteriors based on the 

traditional priors
(but not the posterior from the Walley prior)
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Example: normal mean
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x=c(8,5.5,

n=length(x)

S = student(n

plot(NULL, 

m 

lines(m

Student’s t

distribution



Example: normal mean

Data
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x1=c(8,5.5,

x2=c(11,6.9,0.3,7.5,1,4.2,5.2,5.2,5.7,6.1)

n=length(x1)

S = student(n

plot(NULL, 

for (I in 1:1000) {



Deriving c-boxes

• Have to be derived for each distribution shape

• Traditional approaches based on pivots

• Many solutions have been worked out

binomial(p, n), given n normal(, )

binomial(p, n), given p lognormal(, )

binomial(p, n) gamma(a, b)

Poisson(p) exponential()
. .. .. .



Example: non-parametric problem
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X ~ [(1+C(x))/(1+n), C(x)/(1+n)]

where  C(x)  =  #(Xi ≤ x)
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about the shape 
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Captured uncertainties 

• Uncertainty about distribution shape

• Sampling uncertainty (from small n)

• Measurement incertitude (, censoring)

• Demographic stochasticity (integrality of data) 



Propagated as probability boxes

• C-boxes can be combined in mathematical 

expressions using the p-box technology

• Results also have performance interpretations

• C-boxes can also make predictive p-boxes

– Analogous to frequentist prediction distributions 

– Or Bayesian posterior predictive distributions



Prediction structures

• C-boxes can model the uncertainty about the 

underlying distribution that generated the data

• This is a composition of the c-box through the 

probability model to make a p-box

• Stochastic mixture of p-boxes from interval 

parameters specified by slices from the c-box



Bernoulli( p )

Example:  Bernoulli distribution
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Each interval slice defines a p-box for the underlying 

distribution (rather than a precise distribution)
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Average all such p-boxes
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Binomial sample
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Prediction structures are p-boxes

• Also have confidence interpretation

– Results are prediction intervals enclosing specified 

percentage of observable values, on average

• Can also define analogous tolerance structures

– Tolerance intervals are X% sure to enclose Y% of 

the population
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Computing with c-boxes directly

What if we used all three plans independently?



Conjunction (AND)

a = balchbox(100,25)
b = balchbox(60,39)
c = balchbox(20,17)

ABC = a %&% b %&% c

abc = a %|&|% b %|&|% c
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Summary for c-boxes

• Confidence boxes carry inferential uncertainties 

through mathematical operations 

• Give confidence intervals on results at any  level

• Defined by performance, so not unique

– Just as confidence intervals are not unique

– May create some flexibility

• Don’t seem to be overly conservative

– Elaborate simulation studies have so far not found this



Applies even with zero data

• There may be no sample data at all

• If constraints are known that specify a rigorous 

p-box, then it encodes prediction intervals

• So our performance interpretation applies for

– Parametric problems

– Nonparametric problems

– No data problems
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“the great frontier of 

making things up”

A two-front assault



Conclusions

• C-boxes characterize risk analysis inputs given 

limited sample or constraint information

• Reasonable answers when data and tenable 

assumptions don’t justify particular distributions

• C-boxes don’t optimize; they perform

• C-boxes could serve as the lexicon in a language 

of risk analysis



C-boxes are Bayesian

• Under robust Bayes approach, c-boxes can be 

thought of as Bayesian posteriors 

– Don’t require specification of a unique prior

– Have added feature of statistical performance 

– Imply posterior predictive distributions

– Compatible with specifying a robust or precise 

prior when that’s desirable 

Bayesian sensitivity analysis



A single c-box or prediction box

• Expresses confidence (prediction) intervals at 

all possible α levels

• Including central, high-density, two-sided and 

left- or right-sided intervals at any desired level

• So you don’t have to decide in advance which 

probability level or which kind you want
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E1 = T  (K2  (S & (S1  (K1  R))))
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# Vesely's pressurized tank system from sparse sample data assuming independence
many = 10000
constant <- function(b) if (length(b)==1) TRUE else FALSE
precise <- function(b) if (length(b)==many) TRUE else FALSE
leftside <- function(b) if (precise(b)) return(b) else return(b[1:many])
rightside <- function(b) if (precise(b)) return(b) else return(b[(many+1):(2*many)])
sampleindices = function() round(runif(many)*(many-1) + 1)
pairsides <- function(b) {i=sampleindices(); return(env(leftside(b)[i],rightside(b)[i]))}
env <- function(x,y) if ((precise(x) && precise(y))) c(x,y) else stop('env error’)
beta <- function(v,w) if ((v==0) && (w==0)) env(rep(0,many),rep(1,many)) else 

if (v==0) rep(0,many) else if (w==0) rep(1,many) else sort(rbeta(many, v, w))
kn <- function(k,n) return(pairsides(env(beta(k, n-k+1), beta(k+1, n-k))))

orI <- function(x,y) return(1-(1-x)*(1-y))
andI <- function(x,y) return(x*y)

t = kn(0, 2000)
k2 = kn(3, 500)
s = kn(1, 150)
s1 = kn(0, 460)
k1 = kn(7, 10000)
r = kn(0, 380)

e1 = orI(t, orI(k2, andI(s, orI(s1, orI(k1, r)))))



Northeast Blackout of 2003

• 55 million people affected

• Second only to the Southern Brazil Blackout 

of 1999 as the most widespread in history

• Traced to a software bug in a control room 

alarm system in Ohio

• A national Electric Reliability Organization 

was created in the aftermath



Almost 200,000 km  of  lines, operated by 500 separate companies



Rare event probabilities

• Hardly ever any actual data

• Sometimes we have experts

• But how should we model bald assertions?

– “1 in 1000”

– “1 in ten million”

– “Never been seen in 100 years”



One out of 10k trials
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Zero out of 10k trials

0e+00 2e-08 4e-08 6e-08 8e-08

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

P
ro

b
a

b
il
it
y

0                                                                  810k

“zero corner”



Risk communication with the 

“equivalent binomial count”
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Equivalent binomial count

• An imprecisely computed risk can be expressed 

as a p-box over [0,1]

• This p-box can be transformed into a natural 

language statement of the form “ k out of n ”

• These are natural frequencies

– Large uncertainties imply small denominators

– Or even interval numerators if very large

• People can understand them
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Amazon Mechanical Turk

• Check preference for identical sunglasses rated 

by other buyers using various schemes

– More frequent ‘excellent’ ratings should be better

– Larger pool of buyers rating should be more reliable

• Testing whether

– Turkers can make rational choices

– Natural frequencies are as good as percentages

– Larger denominators convey more reliability

– Interval numerators can be understood



Pair A was rated excellent by 

10 out of 100 customers.

Pair B was rated excellent by 

80 out of 100 customers.

Pair A was rated excellent by 

66 out of 198 customers.

Pair B was rated excellent by 

2 out of 6 customers.

Pair A was rated excellent by 

66 to 88 out of 198 customers.

Pair B was rated excellent by 

33 out of 100 customers.

50% of customers rated Pair A 

as excellent.

Pair B was rated excellent by

50 out of 100 customers.

50% of customers rated Pair B as 

excellent.

Pair A was rated excellent by 

2 out of 4 customers.



Findings

80% 50% rational

10/100 80/100 same sample size

66/198 2/6 same magnitude

[66,88]/198 33/100    even with ambiguity

50% 50/100 prefer natural frequency

2/4 50% unless very uncertain

Sample sizes ~300 “master turkers”



Confidence boxes

• Structures that let you infer confidence intervals 

for a parameter, at any confidence level

• Can be propagated just like p-boxes

• Allow us to compute with confidence



Next steps

• How to incorporate other constraint 

information besides the distribution shape

• Big, multi-parameter problems

• C-box approach for estimating copulas

https://sites.google.com/site/confidenceboxes



More information

https://sites.google.com/site/confidenceboxes

https://sites.google.com/site/reliabilityuncertainty

• Papers

• Slide presentations

• Free software

Google “confidence boxes” [plural…singular is a 

blog on teenage self-esteem & self-empowerment]
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Questions?



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0



Stopping rule

• C-boxes can depend on the stopping rule

– But not knowing the stopping rule may just mean 

the c-box is wider

– Knowing the stopping rule tightens the c-box


