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We need distributions

A Risk analyses

A Safety assessments
A Reliability analysis

A Environmental models
A Financial forecasts

A Uncertainty modeling



Problem: selecting distributions

A How should we chose a distribution given
limited sample or constraint informati@®n

A And what should we do when the available
data and tenable assumptions do not specify
a single distribution to use?



Manyways to fit distributions to dat:

A Maximum entropy

A Maximum likelihood

A Bayesian inference

A Method of matching Moments = common
A Goodness of fit (KS, ADg2, etc.)
APERT

A Regression techniques

A Empirical distribution functions
el n fact there ar



Little coherence In practice

A Disparate methods used across risk analysis

A Common to mix and match distributions with
different justifications

A Analyses are thus based on no clear criterion
standard of performance

A Is this okay?



Two related problems

A Estimating thalistributionfor x-values
I Observable values

A Estimatingparameteror thex-distribution
I Unobservable guantities

A We need solutions for both problems



Frequentist confidence Intervals

A Favored by many engineers
A Guarantees statistical performance over time
A But difficult to employ consistently in analyse

A Not clear how to propagate them through
mathematical calculations



Bayesian approaches

A Permit mathematical calculations

A But lack guarantees ensuring leng
statistical performance

A Many engineers are reluctant to use
Bayesian methods



Confidence distributions

A Not widely used in engineering or statistics
A Introduced by Cox in the 1950s

A Closely related to other bettknown ideas
I St ud edstrilduson
I Bootstrap distributions



Confidence distributions

A Distributional estimators of (fixed) parameters
A Give confidence interval @nyconfidence level
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Confidence interval

A A confidence intervalvith coveragex

In replicate problems, a proporti@gof computed
confidence intervals will enclose the true value

A Using methods to compute confidence
Intervals thus ensures statistipalrformance



Confidence distributions

A Have theshapeof a distribution
A But correspond to no random variables
A Not supposed to compute with them

ADono6t al ways exi st



Confidence structures-{moxes)

A Generalization of confidence distributions
A Reflect inferential uncertainty about paramet

A Known for many cases
I binomial rate and other discrete parameters
I normals and many other problems
I nonparametric case

A Still have performance/confidence interpreta



Confidence interpretation
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Estimators

A Point estimates
A Interval estimates
A Distributional estimates

A P-box estimates



Binomial ratep for k of ntrials
p ~ env(betel, n-k+1), betak+1, n-k))
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How does the Bayes analysis comp:e

A No such thing atheBayes analysis

A There are always many possible analyses
I Different priors, which yield different answers
I When data sets are small, the differences are bic

A For binomial rate there are four or five priors
Bayesians have not been able to chose amo
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Probability density
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Cumulative probabillity

The ebox includes all
posteriors based on the
traditional priors
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Example: normal mean
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Example: normal mean

m~X+sOr_,/én
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Deriving cboxes

A Have to be derived for each distribution shar

A Traditional approaches based on pivots

A Many solutions have been worked out

pinomia
pinomia
pinomia

(0, n), givenn normalm s)
(0, n), givenp lognorma(m s)
(o, n) gammaa, b)

Poissong) exponential()



Example: nomarametric problem
naa X~ [(A+C())/(1+n), C(¥)/(1+n)]
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Captured uncertainties

A Uncertainty about distribution shape
A Sampling uncertaintgfrom smalln)
A Measurement incertitudé, censoring)

A Demographic stochasticifyntegrality of data)



Propagated as probability boxes

A C-boxes can be combined in mathematical
expressions using thelmx technology

A Results also haveerformance interpretations

A C-boxes can also make predictivépxes



Prediction structures

A C-boxes can model the uncertainty about the
underlying distributiorthat generated the date

A Thisis acompositiorof the ebox through the
probabilitymodel to make a-pox

A Stochastic mixture of-poxes from interval
parameters specified by slices from thieox



Example: Bernoulli distribution
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Each interval slice defines alqmx for the underlyin
distribution (rather than a precise distribution)



Cumulative probability
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Betabinomial predictive goox

Cumulative probability
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Prediction structures areljpxes

A Also have confidence interpretation

I Results ar@rediction intervalsenclosing specified
percentage of observable values, on average

A Can also define analogous tolerance structut

I Tolerance intervalare X% sure to enclos¥o of
the population



Computing with eboxes directly

1 1
g O lm—m—" 0l
O 020406081 O 020406081 0O 020406081
Plan A Plan B Plan C
25% fall 39 out of 60 failed 17 out of 20 failed

What If weused allthree plans independently?
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Summary for eboxes

A Confidence boxes carry inferential uncertaintie

through mathematical o

A Give confidence interva

nerations

S on results at ankgvel

A Defined by performance, so not unique
I Just as confidence intervals are not unique
I May create some flexibllity

ADondt seem

t o be over

I Elaborate simulation studies have so far not found



Applies even with zero data

A There may be neampledata at all

A If constraints are known that specify a rigorot
p-box, then it encodes prediction intervals

A So our performance interpretation applies for
| Parametric problems
I Nonparametric problems
I No data problems



Maximum Maximum
likelihood entropy

Bayesian Estimation Expert
Inference elicitation

Method of PERT
moments



Conclusions
A C-boxes characterize risk analysis inpgiteen
limited sample or constraint information

A Reasonable answers when data and tenable
assumptions donot | u:

ACboxes donot pedgm i mi z

A C-boxes could serve as the lexicon in a langu
of risk analysis



C-boxes are Bayesian

A Under robust Bayes approachhaxes can be
thought of as Bayesian posteriors

iDonot require specific

I Have added feature of statistical performance

I Imply posterior predictive distributions

I Compatible with specifying a robust or precise
prior when thatos des.|



A single cbox or prediction box

A Expresses confidence (prediction) intervals &
alpossi bl e U | evels

A Including central, higidensity, twesided and
left- or rightsided intervals at any desired lev

ASo you dondét have to
probability level or which kind you want
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V e s epresnirzed tank
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Top event tank rupture under pressurizafdn

Has the
performance
Interpretation
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# Vesely's pressurized tank system from sparse sample data assuming independence
many = 10000

constant < - function(b) if (length(b)==1) TRUE else FALSE

precise < - function(b) if (length(b)==many) TRUE else FALSE

leftside < - function(b) if (precise(b)) return(b) else return(b[1:many])

rightside <- function(b) if (precise(b)) return(b) else return(b[(many+1):(2*many)])
sampleindices = function() round(  runif (many)*(many -1) +1)

pairsides <- function(b) { i=sampleindices (); return( env (leftside (b)[ i], rightside (b)[ i]))}

env <- function( x,y) if ((precise(x) && precise(y))) c( X,y)elsestop(' enverror 0)
beta < - function( v,w) if ((v==0) && (w==0)) env (rep(0,many),rep(1,many)) else
if (v==0) rep(0,many) else if (w==0) rep(1,many) else sort( rbeta (many, v, w))

kn <- function( k,n) return( pairsides (env (beta(k, n -k+1), beta(k+1, n  -k))))

orl <- function( x,y) return(1 -(1-x)*(1 -y))
andl <- function( X,y ) return(x*y)

t = kn (0, 2000)
k2 = kn (3, 500)

s = kn(1, 150)

sl = kn(0, 460)
k1= kn(7, 10000)
r= kn (0, 380)

el = orl (t, orl (k2, andl (s, orl (sl, orl (k1,r)))))



Northeast Blackout of 2003

A 55 million people affected

A Second only to the Southern Brazil Blackout
of 1999 as the most widespread In history

A Traced to a software buiga control room
alarmsystemn Ohio

A A national Electric Reliability Organization
was created Iin the aftermath



United States kv
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Source: FEMA %g

Almost 200,000 km of lines, operated by 500 separate companies




Rare event probabilities

A Hardly ever any actual data
A Sometimes we have experts
A But how should we model bald assertions?
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Risk communication with the
Nequl val ent DI
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Match a calculated risk to abmx

Risk
k-n c-box

Confidence

0 1
Probabillity



Equivalent binomial count

A An imprecisely computed risk can be expres:
as a pbox over [0,1]

A This pbox can be transformed into a natural
| anguage stat &meofrto o

A These are natural frequencies
| Large uncertainties imply small denominators
I Or even Interval numerators if very large

A People can understand them



Confidence

PPV

The chance the patient is sick
1511 to 12 out of 12

= PPV
= EBC

Probability

Confidence

NPV

The chance the patient is well
is3todoutofd

m NPV
m EBC

Probability



Amazon Mechanical Turk

A Check preference for identical sunglasses ra
by other buyers using various schemes

iMore frequent oOexcell e

I Larger pool of buyers rating should be more relia
A Testing whether

I Turkers can make rational choices

I Natural frequencies are as good as percentages

| Larger denominators convey more reliability
I Interval numerators can be understood



Pair A was rated excellent by 50% of customers rated Pair B as
2 out of 4 customers. excellent.



