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We need distributions

ÅRisk analyses

ÅSafety assessments

ÅReliability analysis

ÅEnvironmental models

ÅFinancial forecasts

ÅUncertainty modeling 



Problem: selecting distributions

ÅHow should we chose a distribution given 

limited sample or constraint information?

ÅAnd what should we do when the available 

data and tenable assumptions do not specify 

a single distribution to use?



Manyways to fit distributions to data

ÅMaximum entropy

ÅMaximum likelihood

ÅBayesian inference

ÅMethod of matching moments

ÅGoodness of fit (KS, AD, c2, etc.)

ÅPERT

ÅRegression techniques

ÅEmpirical distribution functions

éin fact there are even more methodsé

still most 
common



Little coherence in practice

ÅDisparate methods used across risk analysis

ÅCommon to mix and match distributions with 

different justifications

ÅAnalyses are thus based on no clear criterion or 

standard of performance

ÅIs this okay?



Two related problems

ÅEstimating the distributionfor x-values

ïObservable values

ÅEstimating parametersfor the x-distribution

ïUnobservable quantities

ÅWe need solutions for both problems



Frequentist confidence intervals

ÅFavored by many engineers 

ÅGuarantees statistical performance over time

ÅBut difficult to employ consistently in analyses 

ÅNot clear how to propagate them through 

mathematical calculations



Bayesian approaches

ÅPermit mathematical calculations

ÅBut lack guarantees ensuring long-run 

statistical performance

ÅMany engineers are reluctant to use 

Bayesian methods



Confidence distributions

ÅNot widely used in engineering or statistics

ÅIntroduced by Cox in the 1950s

ÅClosely related to other better-known ideas

ïStudentôs t-distribution

ïBootstrap distributions



Confidence distributions

ÅDistributional estimators of (fixed) parameters

ÅGive confidence interval at anyconfidence level
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Confidence interval

ÅA confidence intervalwith coverage a

In replicate problems, a proportion aof computed 

confidence intervals will enclose the true value 

ÅUsing methods to compute confidence 

intervals thus ensures statistical performance



Confidence distributions

ÅHave the shapeof a distribution

ÅBut correspond to no random variables

ÅNot supposed to compute with them

ÅDonôt always exist (e.g., for the binomial rate)



Confidence structures (c-boxes)

ÅGeneralization of confidence distributions

ÅReflect inferential uncertainty about parameter

ÅKnown for many cases

ïbinomial rate and other discrete parameters

ïnormals, and many other problems

ïnon-parametric case

ÅStill have performance/confidence interpretation
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Estimators

ÅPoint estimates (e.g., sample mean)

ÅInterval estimates (e.g., confidence intervals)

ÅDistributional estimates (Bayesian posteriors)

ÅP-box estimates (e.g., c-boxes)



Binomial rate p for k of n trials
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k = 2

n = 10

p ~ env(beta(k, n-k+1), beta(k+1, n-k))

If 1-a= b, result is identical to classical Clopper-Pearsoninterval



How does the Bayes analysis compare?

ÅNo such thing as theBayes analysis

ÅThere are always many possible analyses

ïDifferent priors, which yield different answers

ïWhen data sets are small, the differences are big

ÅFor binomial rate there are four or five priors 

Bayesians have not been able to chose among



k=2; n=10
par(mfrow=c(1,1))
# plots of the prior densities
steps = 1000
x = 0:steps/steps

# priors
plot(NULL, xlim=c(0,1),ylim=c(0,2),xlab='p',ylab='Probability density') 
y=1.6186*x^x*(1
y=dbeta(x,0.5,0.5); sum(y[is.finite(y)]); lines(x,y,lwd=4,col='blue') # Jeffreys, Perks, Box&Tiao, Bernardo
y=dbeta(x,2,2); sum(y[is.finite(y)]); lines(x,y, lwd=4,col='gray') # Walley no tails
y=dbeta(x,1,1); sum(y[is.finite(y)]); lines(x,y, lwd=4,col='black')  # Bayes
y=dbeta(x,0.00005,0.00005); sum(y[is.finite(y)]); lines(x,y, lwd=4,col='darkgreen'); lines(c(1,1),c(0.02,2.1), lwd=4,col='dar
Jaynes, Villegas
#y=x^(

# posterior density distributions
plot(NULL, xlim=c(0,1),ylim=c(0,4),xlab='p',ylab='Probability density') 
y=dbeta(x,0.5+k,0.5+n
y=dbeta(x,2+k,2+n
y=dbeta(x,1+k,1+n
y=dbeta(x,k+0.00005,n
# Zellner
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Example: normal mean
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x=c(8,5.5,

n=length(x)

S = student(n

plot(NULL, 

m 

lines(m

Studentôs t

distribution



Example: normal mean

Data
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x1=c(8,5.5,

x2=c(11,6.9,0.3,7.5,1,4.2,5.2,5.2,5.7,6.1)

n=length(x1)

S = student(n

plot(NULL, 

for (I in 1:1000) {



Deriving c-boxes

ÅHave to be derived for each distribution shape

ÅTraditional approaches based on pivots

ÅMany solutions have been worked out

binomial(p, n), given n normal(m, s)

binomial(p, n), given p lognormal(m, s)

binomial(p, n) gamma(a, b)

Poisson(p) exponential(l)
. .. .. .



Example: non-parametric problem
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X ~ [(1+C(x))/(1+n), C(x)/(1+n)]

where  C(x)  =  #(Xi Ò x)

No assumption 

about the shape 

of the distribution 



Captured uncertainties 

ÅUncertainty about distribution shape

ÅSampling uncertainty (from small n)

ÅMeasurement incertitude (°, censoring)

ÅDemographic stochasticity (integrality of data) 



Propagated as probability boxes

ÅC-boxes can be combined in mathematical 

expressions using the p-box technology

ÅResults also have performance interpretations

ÅC-boxes can also make predictive p-boxes

ïAnalogous to frequentistprediction distributions 

ïOr Bayesian posterior predictive distributions



Prediction structures

ÅC-boxes can model the uncertainty about the 

underlying distribution that generated the data

ÅThis is a compositionof the c-box through the 

probability model to make a p-box

ÅStochastic mixture of p-boxes from interval 

parameters specified by slices from the c-box



Bernoulli( p )

Example:  Bernoulli distribution
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Each interval slice defines a p-box for the underlying 

distribution (rather than a precise distribution)
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Average all such p-boxes
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Binomial sample
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Prediction structures are p-boxes

ÅAlso have confidence interpretation

ïResults are prediction intervals enclosing specified 

percentage of observable values, on average

ÅCan also define analogous tolerance structures

ïTolerance intervals are X% sure to enclose Y% of 

the population
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Computing with c-boxes directly

What if we used all three plans independently?



Conjunction (AND)

a = balchbox(100,25)
b = balchbox(60,39)
c = balchbox(20,17)

ABC = a %&% b %&% c

abc = a %|&|% b %|&|% c
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Summary for c-boxes

ÅConfidence boxes carry inferential uncertainties 

through mathematical operations 

ÅGive confidence intervals on results at any alevel

ÅDefined by performance, so not unique

ïJust as confidence intervals are not unique

ïMay create some flexibility

ÅDonôt seem to be overly conservative

ïElaborate simulation studies have so far not found this



Applies even with zero data

ÅThere may be no sampledata at all

ÅIf constraints are known that specify a rigorous 

p-box, then it encodes prediction intervals

ÅSo our performance interpretation applies for

ïParametric problems

ïNonparametric problems

ïNo data problems



Expert 

elicitation

Maximum 

likelihood

Bayesian 

inference

PERTMethod of 

moments

Maximum 

entropy

Estimation

Estimation

ñthe great frontier of 

making things upò

A two-front assault



Conclusions

ÅC-boxes characterize risk analysis inputs given 

limited sample or constraint information

ÅReasonable answers when data and tenable 

assumptions donôt justify particular distributions

ÅC-boxes donôt optimize; they perform

ÅC-boxes could serve as the lexicon in a language 

of risk analysis



C-boxes are Bayesian

ÅUnder robust Bayes approach, c-boxes can be 

thought of as Bayesian posteriors 

ïDonôt require specification of a unique prior

ïHave added feature of statistical performance 

ïImply posterior predictive distributions

ïCompatible with specifying a robust or precise 

prior when thatôs desirable 

Bayesian sensitivity analysis



A single c-box or prediction box

ÅExpresses confidence (prediction) intervals at 

all possible Ŭ levels

ÅIncluding central, high-density, two-sided and 

left- or right-sided intervals at any desired level

ÅSo you donôt have to decide in advance which 

probability level or which kind you want
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Veselyet al. 1981
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Fault tree

E1 = T Ù(K2 Ù(S & (S1 Ù(K1 ÙR))))
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# Vesely's pressurized tank system from sparse sample data assuming independence
many = 10000
constant < - function(b) if (length(b)==1) TRUE else FALSE
precise < - function(b) if (length(b)==many) TRUE else FALSE
leftside < - function(b) if (precise(b)) return(b) else return(b[1:many])
rightside < - function(b) if (precise(b)) return(b) else return(b[(many+1):(2*many)])
sampleindices = function() round( runif (many)*(many -1) + 1)
pairsides < - function(b) { i= sampleindices (); return( env ( leftside (b)[ i], rightside (b)[ i]))}
env < - function( x,y ) if ((precise(x) && precise(y))) c( x,y ) else stop(' env errorô)
beta < - function( v,w ) if ((v==0) && (w==0)) env (rep(0,many),rep(1,many)) else 

if (v==0) rep(0,many) else if (w==0) rep(1,many) else sort( rbeta (many, v, w))
kn < - function( k,n ) return( pairsides (env (beta(k, n -k+1), beta(k+1, n -k))))

orI < - function( x,y ) return(1 - (1 -x)*(1 -y))
andI < - function( x,y ) return(x*y)

t = kn (0, 2000)
k2 = kn (3, 500)
s = kn (1, 150)
s1 = kn (0, 460)
k1 = kn (7, 10000)
r = kn (0, 380)

e1 = orI (t, orI (k2, andI (s, orI (s1, orI (k1, r)))))



Northeast Blackout of 2003

Å55 million people affected

ÅSecond only to the Southern Brazil Blackout 

of 1999 as the most widespread in history

ÅTraced to a software bugin a control room 

alarm system in Ohio

ÅA national Electric Reliability Organization 

was created in the aftermath



Almost 200,000 km  of  lines, operated by 500 separate companies



Rare event probabilities

ÅHardly ever any actual data

ÅSometimes we have experts

ÅBut how should we model bald assertions?

ïñ1 in 1000ò

ïñ1 in ten millionò

ïñNever been seen in 100 yearsò



One out of 10k trials
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Zero out of 10k trials
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Risk communication with the 

ñequivalent binomial countò
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Equivalent binomial count

ÅAn imprecisely computed risk can be expressed 

as a p-box over [0,1]

ÅThis p-box can be transformed into a natural 

language statement of the form ñk out of nò

ÅThese are natural frequencies

ïLarge uncertainties imply small denominators

ïOr even interval numerators if very large

ÅPeople can understand them
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Amazon Mechanical Turk

ÅCheck preference for identical sunglasses rated 

by other buyers using various schemes

ïMore frequent óexcellentô ratings should be better

ïLarger pool of buyers rating should be more reliable

ÅTesting whether

ïTurkers can make rational choices

ïNatural frequencies are as good as percentages

ïLarger denominators convey more reliability

ïInterval numerators can be understood



Pair A was rated excellent by 

10 out of 100 customers.

Pair B was rated excellent by 

80 out of 100 customers.

Pair A was rated excellent by 

66 out of 198 customers.

Pair B was rated excellent by 

2 out of 6 customers.

Pair A was rated excellent by 

66 to 88 out of 198 customers.

Pair B was rated excellent by 

33 out of 100 customers.

50% of customers rated Pair A 

as excellent.

Pair B was rated excellent by

50 out of 100 customers.

50% of customers rated Pair B as 

excellent.

Pair A was rated excellent by 

2 out of 4 customers.


