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Motivation for the present work

ATot he aut horso knowl e
iInterval methods for the analysis of plates with
uncertainty of load and material properties do
not exist anywhere in literature.

A In view of this, we present an Initial
Investigation into the application of interval
finite element methods to problems of bending
of thin plates.
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Present work

A This work presents the application of interval
finite element methods to the analysis of thin
nlates

A Uncertaintyis considered in both the applied
oad anadnodilosu ngos

A In the present study a clamped rectangular pla
IS analysecndthe deformations are obtained.

A Example problemarepresente@nddiscussed
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Present work

A The plate Is assumed to be orthotropic. Interval
uncertainty 1 s as snodaulus
of the plate and also with the applied load.

A Interval Finite Element Method (IFEM) developet
In theearlier workfor line elements of the authors
for truss and frame structures (Rama Rao,
Muhannaand Mullen,2011)isapplied to the case
of thin plates in the present work.
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Present work

A Thismethod Is capable of obtaining bounds for
Interval forcesand moments with the same level
of sharpness as displacements and rotations.

A Example problems dhe thin plate are solved to
demonstrate that the present metlsochpablef
obtaining sharp bounds.

A Resultsare compared to the values of
displacements and forcebtained using
combinatorial and Monte Carlo solutions.
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Geometry of thin plate
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Geometry of thin plate

AThe plate is discretized into rectangular ACM
(Adini-Clough-Melosh plate elements.

AThe ACM element is a neconforming
element with 12 degrees of freedom
(3 degrees of freedom at each of the four
nodes)

ADegrees of freedom at each node are
transverse displacement and normal rotation
about each axmawz,dx anddy
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Geometry of thin plate

¢x1

¢ yl a y2
Degrees of freedom of ACM Element
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Interval FEA of plate

The stiffness matrix of the plate is expressed as

k)= | {[50~ T [D][50-Jisay

—a—b

The load vector of the plate is expressed as

(P = o T( [» [m,_y-)]fde
—a-b
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Interval FEA of plate

The D matrix of the plate is expressed as

3 1 v 0
[D]=12£ 5| 10
_V" .

0 o U 21/)
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Interval FEA of plate

D matrix is decomposed as (Xiao,Fedele and
Muhanna, 2013)

[D ] = A diag(Ao,) 4,

A S o
where @, = F ; 4, ={— : - _? _? A ={v 1 0
12(1-v") 12 24(1+v) 0 1
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Interval FEA of plate

The element stiffness matrix is decomposed as
K|=]4° liag(Aa)| 4
The stiffness matrix for the structure is expressed as
| T
& ]=[4][D] 4]
The force vector for the structure is expressed as

-
P,

(e)
P,

{P}nxl = P(g) = [M:Iurm [5]33341
3

i
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Interval FEA of plate

Modified potential energy D% can be expressed as

1= WY (KW= 0 P+ (U )+ Z B YU

where

U Is the displacement vector

P is the load vector

K Is the stiffness matrix

C Is the constraint matrix

B1 is the strain-curvature matrix
éis the vector of curvatures

— e REC

=




Interval FEA of

plate

Invoking the stationarity of Dz, we obtain

0\ U
0] 2,

011 4,

‘(0 Cc™ BT 0YK 0
C 0 0 00 0
B0 0 —1|0 0

1

o O O O

Lo o -1 oo 00 0«

The above equation can be solved

approach to obtain the interval disp
and curvatures {é}

(P ([M]
0 0
0l 0
L 0) L0}

oyNeumal er
acements {U}
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Interval FEA of plate

Vector of interval moments {M}is obtained from the

vector of curvatures {é} as follows:

(" MI ) ' KI - E} | l V 0 i X

T M ?=[D]=< K, = (1 ? N v 1 0 Kr, ¢
| | _ 2 o |

hM-“'nT J LH.I,T ) 0 0 (l 2 V) hﬂ.-171‘
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Example problem

Table I Properties of rectangular plate and discretization scheme
Length Lx 2.0m
Width Ly 3.0m
Thickness 0.025 m
Young’s modulus 210 GPa
Poisson’s ratio v 0.3
Applied Pressure p. 14.0x10° Pa
Number of divisions along x-axis nx
Number of divisions along y-axis ny
Notation for discretization scheme nx xny
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Example problem

A First the present interval approach is validated
by solving the problem of a rectangular plate
with a42 4 discretization scheme.

A Solution is computed using the present interval
approach and combinatorial solution.

A The computation of results for combinatorial
solution required computation of results for
21°=65,536 combinations
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Example problem

Solution is computed for the following load cases

A Case A: Uncertainty of load alone

ACase B: Uncertainty o
alone

A Case C: Uncertainty of load and E

Maximum uncertainty in load B0 percent

(NB percent about the mean value)

Maximum uncertainty of E 13 percent

(ND.5percent about the mean value)
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yDiscretization scheme of rectangular plate

A
20 25 __
A
13 14 15 16
20
9 10 11 12
11 15
5 6 7 8 Ly
6 10
1 2 3
1
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Example problem

Alt is observed from these figures that the
Interval values oMxx andMyy computed
enclose the combinatorial solution at all level:
of uncertainty

\V/
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Table ] Clanupedsecangular plate (44 seect dsplcements and offonsof the plate for 10% uncetany
Joad (Case-A)

Method it O {)Yxlof(ra(hans) tnode (7’1.><105(radians) pn0de |
ower | Upper | Lower | Uper | Lower | Upe
Combogonl | -LS416 | -LTRL | LIS | 096432 | 13506 | 28MI2
1 ) R 4 A B AN | A Va1
Emor 0 0 Il 0 0 i

It is observed that the bounds of the interval solution match the
corresponding bounds of combinatorial solution exactly
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Table 3 Clamped sectangular plat( 44 slecte displacements and rtafons o he plae for 1% wncertany

ofE (Case-B)

el P ()xxl()j(radians) anode Hl.xl()j(radians) it node |2
ower | Uper | Lower | Uper | Lower | Upper

Combmatoral | -L82260 | -LS0M6 | L0467 | -LODSO | 20760 | 2705

tervl L8000 | L8095 | L | LONI0 | 26780 | LTk

Frmor 003008 | 06 0BT 00 | 04

It is observed that the bounds of the interval solution sharply enclose the
corresponding bounds of combinatorial solution
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Table 4 Clamped ectangular plate 4+4)-selected isplacements and rofafons of the platefor 10% wncertaiy of

Joad and % wncerainy of E (Case-{)

et b 0¥t | 0,10t |
ower | Upper | Lower | Uper | Lower | Uppe

MCS K ATAN A0 A

Inerval L9080 | -LTIB0 | -LIOGST DS | M0 | 284D

Frmor AV T /R A . A 0

Combinatorial solution is impractical for this case as it requires

232 = 4294967296 combinations. Thus Monte Carlo solution (MCS) is
computed. It is observed that the bounds of MCS sharply enclose the
bounds of the interval solution from inside
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Table § Clamped rectangularplate (4 - moments at the center of theplate for 10% uncertauny ofload (Case-A
e MW(kN) itmode |3 i IRY) o mode 1
Lower Unpe Lower Upper
Comb 233412 0887 421 684 143307
Iferval 2033412 08T 421 684 L4307
Ermor 0 Il Il 0

It is observed that the bounds of the interval solution match the
corresponding bounds of combinatorial solution exactly
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Table 0 Clammped rectangular plat (44 - moments at the center of the plate for 1% uncertanty of E (Case-B)
e Mw(kN) atmode |3 M0 HPRY) atode 3
Lower Upper Lower Upper
Comt L1467 20173 1343036 132130
Ineral 23011% 25300 1338765 1306311
Emor' 366 NI 16 LY

It is observed that the bounds of the interval solution sharply enclose the
corresponding bounds of combinatorial solution
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Table 7 Clemped rectanguler plte (44 moments at the center of the phte for 10% uncertany of load and

1% unceranty of  (Case-C)

Method _— , ﬂ
MTT(ld\)at 10tk [ Mm.xloa(kN) atnode [
Lower Upper Lower Upper
MY 2012438 SR 1383 48] QNI
Inerva 078 94) AV 1434310 1211391
Emorls AL ) L 134

It is observed that the bounds of MCS sharply enclose the bounds of the
interval solution from inside
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Example probleni Rectangular
plate with 20x20 discretization

AAfter validating the results for the example
problem with4x4 discretization, results are
computed for example problem with 20x20
discretization.

AFor all results of displacements, rotations and
moments, its observed that the bounds of MC!
sharply enclose the bounds of the interval
solution frominside
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Variation of ey along length of the plate with 10% load uncertainty and 1 percent

uncertainty in E I~
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