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Motivation for the present work

= To the authors’ knowledge, applications of
Interval methods for the analysis of plates with
uncertainty of load and material properties do
not exist anywhere In literature.

= In view of this, we present an initial
Investigation into the application of interval

finite element methods to problems of bending
of thin plates.
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Present work

= This work presents the application of interval
finite element methods to the analysis of thin

nlates

= Uncertainty Is considered in both the applied
load and Young’s modulus

= In the present study a clamped rectangular plate
IS analysed and the deformations are obtained.

Example problems are presented and discussed
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Present work

= The plate Is assumed to be orthotropic. Interval
uncertainty is associated with the Young’s modulus
of the plate and also with the applied load.

= Interval Finite Element Method (IFEM) developed
In the earlier work for line elements of the authors
for truss and frame structures (Rama Rao,
Muhanna and Mullen, 2011)is applied to the case
of thin plates in the present work.
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Present work

= This method Is capable of obtaining bounds for
Interval forces and moments with the same level
of sharpness as displacements and rotations.

= Example problems of the thin plate are solved to
demonstrate that the present method Is capable of
obtaining sharp bounds.

= Results are compared to the values of
displacements and forces obtained using
combinatorial and Monte Carlo solutions.
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Geometry of thin plate
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Geometry of thin plate

 The plate Is discretized into rectangular ACM
(Adini-Clough-Melosh) plate elements.

* The ACM element Is a non-conforming
element with 12 degrees of freedom
(3 degrees of freedom at each of the four
nodes)

* Degrees of freedom at each node are
transverse displacement and normal rotation
about each axis wz,0x and 0y
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Geometry of thin plate

o
Degrees of freedom of ACM Element
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Interval FEA of plate

The stiffness matrix of the plate is expressed as

k)= | {[50~ T [D][50-Jisay

—a—b

The load vector of the plate is expressed as

(P = o T( [» [m,_y-)]fde
—a-b
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Interval FEA of plate

The D matrix of the plate is expressed as

3 1 v 0
[D]=12£ | 10
—V .

0 o U 21/)
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Interval FEA of plate

D matrix is decomposed as (Xiao,Fedele and
Muhanna, 2013)

[D ] = A diag(Ao,) 4,

A S o
where @, = F ; 4, ={— : - _? _? A ={v 1 0
12(1-v") 12 24(1+v) 0 1
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Interval FEA of plate

The element stiffness matrix is decomposed as
T

K|=]4° liag(Aa)| 4
The stiffness matrix for the structure is expressed as

& ]=[4][p]l4]
The force vector for the structure is expressed as

-
P,

P(f’)

{P }nx = 29 = [M:Iurm [5]HM
Inxl P; ) 1
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Interval FEA of plate

Modified potential energy [1* can be expressed as

1= WY (KW= 0 P+ (U )+ Z B YU

where

U is the displacement vector

P is the load vector

K'is the stiffness matrix

C is the constraint matrix

B1 is the strain-curvature matrix
K is the vector of curvatures
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Interval FEA of plate

Invoking the stationarity of I'1*, we obtain

‘(0 Cc™ BT 0YK 0
C 0 0 00 0
B0 0 —1|0 0
Lo o -1 oo o

The above equation can be so
approach to obtain the interval disp

and curvatures {k}
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Interval FEA of plate

Vector of interval moments {M}is obtained from the
vector of curvatures {x} as follows:

' MI - - H.I - E} | l V 0 ' X

T M ?=[D]=< K, = (1 ? N vl 0 KK, ¢
| | 2 o |

M, K, 0o o U 2") K,

— st —— REC

=



Example problem

Table I Properties of rectangular plate and discretization scheme
Length Lx 2.0m
Width Ly 3.0m
Thickness 0.025 m
Young’s modulus 210 GPa
Poisson’s ratio v 0.3
Applied Pressure p. 14.0x10° Pa
Number of divisions along x-axis nx
Number of divisions along y-axis ny
Notation for discretization scheme nx xny
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Example problem

 First the present interval approach is validated
by solving the problem of a rectangular plate
with a 4x4 discretization scheme.

 Solution is computed using the present interval
approach and combinatorial solution.

» The computation of results for combinatorial
solution required computation of results for
216=65,536 combinations
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Example problem

Solution 1s computed for the following load cases

« (Case A: Uncertainty of load alone

* (Case B: Uncertainty of Young’s modulus (E)
alone

» Case C: Uncertainty of load and E

Maximum uncertainty in load 1s 10 percent

(+£5 percent about the mean value)

Maximum uncertainty of E iIs 1 percent

(0.5 percent about the mean value)
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yDiscretization scheme of rectangular plate

A
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Example problem

* |t IS observed from these figures that the
Interval values of Mxx and Myy computed
enclose the combinatorial solution at all levels
of uncertainty
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Table ] Clanupedsecangular plate (44 seect dsplcements and offonsof the plate for 10% uncetany
Joad (Case-A)

Method it O {)Txlof(ra(hans) tnode (}rxle(radians) pn0de |
ower | Upper | Lower | Uper | Lower | Upe
Combogonl | -LS416 | -LTRL | LIS | 096432 | 13506 | 28MI2
1 ) R 4 A B AN | A Va1
Emor 0 0 Il 0 0 i

It is observed that the bounds of the interval solution match the
corresponding bounds of combinatorial solution exactly

—&Geﬁ%;%ﬂ” Seay - — . _REL

=



Table 3 Clamped sectangular plat( 44 slecte displacements and rtafons o he plae for 1% wncertany

ofE (Case-B)

el P Hxxl()j(radians) anode Hl.xl()j(radians) it node |2
ower | Uper | Lower | Uper | Lower | Upper

Combmatoral | -L82260 | -LS0M6 | L0467 | -LODSO | 20760 | 2705

tervl L8000 | L8095 | L | LONI0 | 26780 | LTk

Frmor 003008 | 06 0BT 00 | 04

It is observed that the bounds of the interval solution sharply enclose the
corresponding bounds of combinatorial solution
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Table 4 Clamped ectangular plate 4+4)-selected isplacements and rofafons of the platefor 10% wncertaiy of

Joad and % wncerainy of E (Case-{)

et b 0¥t | 0,10t |
ower | Upper | Lower | Uper | Lower | Uppe

MCS K ATAN A0 A

Inerval L9080 | -LTIB0 | -LIOGST DS | M0 | 284D

Frmor AV T /R A . A 0

Combinatorial solution is impractical for this case as it requires

232 = 4294967296 combinations. Thus Monte Carlo solution (MCS) is
computed. It is observed that the bounds of MCS sharply enclose the
bounds of the interval solution from inside
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Table § Clamped rectangularplate (4 - moments at the center of theplate for 10% uncertauny ofload (Case-A
e MW(kN) itmode |3 i IRY) o mode 1
Lower Unpe Lower Upper
Comb 233412 0887 421 684 143307
Iferval 2033412 08T 421 684 L4307
Ermor 0 Il Il 0

It is observed that the bounds of the interval solution match the
corresponding bounds of combinatorial solution exactly
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Table 0 Clammped rectangular plat (44 - moments at the center of the plate for 1% uncertanty of E (Case-B)
e Mw(kN) atmode |3 M0 HPRY) atode 3
Lower Upper Lower Upper
Comt L1467 20173 1343036 132130
Ineral 23011% 25300 1338765 1306311
Emor' 366 NI 16 LY

It is observed that the bounds of the interval solution sharply enclose the
corresponding bounds of combinatorial solution
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Table 7 Clemped rectanguler plte (44 moments at the center of the phte for 10% uncertany of load and

1% unceranty of  (Case-C)

Method _— , ﬂ
MTT(ld\)at 10tk [ Mm.xloa(kN) atnode [
Lower Upper Lower Upper
MY 2012438 SR 1383 48] QNI
Inerva 078 94) AV 1434310 1211391
Emorls AL ) L 134

It is observed that the bounds of MCS sharply enclose the bounds of the
interval solution from inside
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Example problem — Rectangular
plate with 20x20 discretization

 After validating the results for the example
problem with4x4 discretization, results are
computed for example problem with 20x20
discretization.

* For all results of displacements, rotations and
moments, It I1s observed that the bounds of MCS
sharply enclose the bounds of the interval
solution from inside
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Tabl § Clamped recangular plte (20020} ciplaementsaf the cener of the plte for 10% wnoertany of o
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Tabl 10 Claomed rctanglar plee 1020} isplacement a he centerof e plt or 10" wnoetanty o o
and o neeramty of E Case-C)

et By ()\,xlﬂj(radians) e 11 | 6 1 atode 1
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Tabl L1 Clomped setangulrpla (20020} moments centerof e plt for 10 wncetamtyof oed (Casec
i M, ami M ami
Lover Uppe Loner Upper
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vl 180016 SIRH JJMT3 SRS
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Tabe 12 Clomped recangua e (2020} moments f e cnrof el o "y ety of E Case B

B sk M e
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NS T80 | 4 | L Hed) [
el A O 1 1 | A 00461
Emrs ) 15 Al Al




Table 13 Clanmee rectangulr plate (2020 moments af the center of the plate for 10% wncertany of oad and
[ uncertamty ot (CasecC)
i M amie2 M X e 2

Lowe Upper Lowe Upper
MCS 08068 05144 161 4] 121883
nteva 15438 919811 U407 040080
Ermor 18 0413 (943 19




Conclusions

= A linear Interval Finite Element Method (IFEM)
for structural analysis of thin plates Is presented.

= Uncertainty in the applied load and Young’s
modulus is represented as interval numbers.

= Results are also computed using combinatorial
solution and Monte Carlo simulations as
appropriate.
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Conclusions

= Example problems illustrate the applicability of
the present approach to the problem of predicting
the structural behavior of thin plates in the

presence of uncertainties.
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