

Institute for Structural Analysis

Numerical Simulation of Wooden Structures with Polymorphic Uncertainty in Material Properties

F. Leichsenring, W. Graf, M. Kaliske

Deutsche Forschungsgemeinschaft

Outline

Motivation

Spruce specimen tests

Polymorphic uncertain structural analysis

Numerical example

Conclusion and Outlook

Motivation

- wood underlays large variation in material parameters
 - product of nature
 - discontinuities
 - dependencies to environmental conditions
- realistic representation of structural capabilities with respect to material uncertainties
- sustainable use of construction material

bauwesen.tu-dortmund.de

 $F_{c,\alpha,d} = S_d \cdot \cos(\alpha)$

 $H_d = S_d \cdot cos(\gamma)$

 $h_1 = 160$ $h_2 = 200$

Motivation

Rafter and tie beam joint

- design according to DIN EN 1995
- cutting depth t_v

$$\frac{\sigma_{c,\alpha,d}}{f_{c,\alpha,d}} \le 1 \text{ with } \sigma_{c,\alpha,d} = \frac{F_{c,\alpha,d}}{A_F} \text{ and } A_F = \frac{t_v}{\cos \alpha} \cdot b$$

$$f_{c,\alpha,d} = \frac{J_{c,0,d}}{\sqrt{\left(\frac{f_{c,0,d} \cdot \sin^2 \alpha}{2f_{c,90,d}}\right)^2 + \left(\frac{f_{c,0,d} \cdot \sin \alpha \cos \alpha}{2f_{\nu,d}}\right)^2 + \cos^4 \alpha}}$$

front wood length

$$\frac{\tau_{\nu,d}}{f_{\nu,d}} \le 1 \text{ with } \tau_{\nu,d} = \frac{H_d}{l_F \cdot b_{ef}} \text{ and } b_{ef} = k_{cr} \cdot b$$

- ultimate load

$$S_d = \min\left(\frac{f_{c,\alpha,d} \cdot A_F}{\cos \alpha}, \frac{f_{\nu,d} \cdot l_{\nu} \cdot b_{ef}}{\cos \gamma}\right)$$

b = 160 $t_v = 30$ $l_v = 150 \text{ [mm]}$ $t_v = \frac{1}{V}$ $F_{c,\alpha,d}$ $\gamma = 60^{\circ}$ H_d $\alpha = \gamma/2$ part 2

Motivation

iSD Institute for Structural Analysis

Specimen tests

- Norway spruce specimen
- material strengths $f_{t,90},\ f_{t,l},\ f_{c,r},\ f_{c,t},\ f_{c,l},\ f_v$
- elasticity moduli
 - E_r, E_t, E_l
- all tests according to DIN and DIN EN
- 45/30 samples for each test mode
- standard climate conditions
 - $T = 20 \pm 2^{\circ} C, RH = 65 \pm \%$

Specimen tests

- considerably "good" circumstances broad variety of test results
- no strong correlation between geometric/climate conditions and test results

Specimen tests

- preselection of outliers

$$l_{IQR} = 1.5(\bar{F}_X(\frac{3}{4}) - \bar{F}_X(\frac{1}{4}))$$
$$x_l = \bar{F}_X(\frac{1}{4}) - l_{IQR}$$
$$x_u = \bar{F}_X(\frac{3}{4}) + l_{IQR}$$

parameter	E_r	E_t	E_l	$f_{t,90}$	$f_{t,l}$	$f_{c,r}$	$f_{c,t}$	$f_{c,l}$	f_v
standard	DIN 52192	DIN 52192	DIN 52185	EN 408	DIN 52188	DIN 52192	DIN 52192	DIN 52185	EN 408
samples	41	44	28	30	30	45	45	30	30
$\bar{m} \left[N/mm^2 ight]$	656	298	17132	2.64	121.64	3.09	3.64	43.60	5.77
$\bar{\sigma}~[N/mm^2]$	107	36	2211	0.33	18.20	0.23	0.43	2.07	0.73

– characterizing function $\ \xi(\cdot)$ for precise set $\ A\subseteq \mathbb{R}$

$$\xi_A : \mathbb{R} \to \{0; 1\}, x \mapsto \begin{cases} 1, \ x \in A \\ 0, \ x \notin A \end{cases}$$

- extension to non-precise data set

$$\tilde{A} = \{(x, \mu_{\tilde{A}}(x)) \mid x \in X, \mu_{\tilde{A}}(x) \ge 0\}$$

- characterizing function $\xi(\cdot)$ becomes membership function $\mu(\cdot)$ $\mu : \mathbb{R} \to [0, 1]$ $\exists x_0 \in \mathbb{R} : \mu(x_0) = 1$ $A_{\alpha} := \{x \in \mathbb{R} \mid \mu_{\tilde{A}}(x) \ge \alpha\} = [a_{\alpha}, b_{\alpha}]$

- random variable \boldsymbol{X} cannot be described precisely
- introduction of fuzzy probability $\hat{P} = (P_{\alpha})_{\alpha \in (0;1]}$ and fuzzy probability distribution $\hat{P}_X = ((P_X)_{\alpha})_{\alpha \in (0;1]}$
- representation as fuzzy cumulative distribution with uncertain parameters $\tilde{\theta}_i$

$$\hat{F}_X = ((F_X)_{\alpha})_{\alpha \in (0,1]}$$
$$\hat{F}_X = (\{F_{\theta_1 \times \theta_2} \mid \theta_1 \in \tilde{\theta}_{1,\alpha}, \theta_2 \in \tilde{\theta}_{2,\alpha}\})_{\alpha \in (0,1]}$$

- three loop computational model

fuzzy analysis $\tilde{\theta}_i = (\tilde{\theta}_{1,i} \times \tilde{\theta}_{2,i})$ stochastic analysis $F_{\theta_i}(x)$ fundamental solution $f_{\mathcal{Z}}:\mathbb{R}^n\to\mathbb{R}^m$ $\bar{F}_i(z)$ $\tilde{\sigma} = \langle \sigma_{\min,\alpha}, \sigma_{\max,\alpha} \rangle$

- bounds for A_0 $P_{\theta}(\vartheta_{\min} < \theta < \vartheta_{\max}) = (1 - \alpha_s)$ $\theta_{0,l} = \vartheta_{\min}$ $\theta_{0,r} = \vartheta_{\max}$
- heuristic approach for bunch parameters, A_1

$$\bar{x} \in \bar{X}, P(\bar{X}) = F_X(\theta_1, \theta_2)$$

$$X_i^* = X \cup \{\bar{x}_i\} \forall \bar{x}_i \in \bar{X} , i = \{1, \dots, n\}$$

$$\boldsymbol{\mu}^* = [\mathrm{E}[X_1^*], \dots, \mathrm{E}[X_n^*]]$$

$$\boldsymbol{\sigma}^* = [\sqrt{\mathrm{Var}[X_i^*]}, \dots, \sqrt{\mathrm{Var}[X_n^*]}]$$

$$\mathrm{MoM} : \begin{cases} (\mu_{q_5}, \sigma_{q_5}) & \to (\vartheta_{1,\min_1}, \vartheta_{1,\min_2}) \\ (\mu_{q_{95}}, \sigma_{q_{95}}) & \to (\vartheta_{1,\max_1}, \vartheta_{1,\max_2}) \end{cases}$$

rel.

- timber board with 4 knotholes

 $t \times b \times l = 18 \times 150 \times 350 \, mm$

- computation of ultimate loading $p_u = \max(p)$

empty knotholes: $k_{type} = 1$

knotholes filled: $k_{type} = 2$ with branches

- multi-surface plasticity with hardening and softening rules in order to capture specific characteristics of wood
- seven failure modes
 - tension in radial direction
 - pressure in radial direction
 - tension in tangential direction
 - pressure in tangential direction
 - tension in longitudinal direction
 - pressure in longitudinal direction
 - shear failure
- TSAI-WU criterion for failure $f(\underline{\sigma}) = \underline{a} : \underline{\sigma} + \underline{\sigma} : \underline{\underline{b}} : \underline{\sigma} \le 1$

with yield condition

 $f(\underline{\sigma}) \le 0$

- evaluation on neural network
- preselection of input parameters
 based on sensitivity analysis
- evidently no significant influence of knothole size $ilde{d}_i$
- trapezoidal interval distribution parameters $E_l, \ f_{t,l}, \ f_v$
- triangular distribution parameters

$$E_r, E_t, f_{c,r}, f_{c,t}, f_{c,l}, f_v$$

 $f_{d,1}, f_{d,2}, f_{d,3}, f_{d,4}$

- 7 α levels $\alpha = \{0, \frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{5}{6}, 1\}$
- computation of uncertain ultimate load \widetilde{p}_u
- multiple quantile values q_i $i = \{1, 5, 25, 50, 75, 95, 99\}$
- apparently filling type minor effect to \tilde{p}_u

Conclusion

- engineering related process to cope with material uncertainties
- use of generalized uncertainty model
- extension of information compared to deterministic design value

Outlook

- further interpretation of uncertain result variables necessary in order to deduce design parameters / decisions
- no correlation of material properties considered
- geometrical distributed uncertain material parameters (fuzzy fields / stochastic fields)
- compare with p-boxes