How to Estimate Amount of Useful Information, in Particular Under Imprecise Probability

```
Home Page
```

Luc Longpré ${ }^{1}$, Olga Kosheleva ${ }^{2}$, and Vladik Kreinovich ${ }^{1}$
${ }^{1}$ Department of Computer Science ${ }^{2}$ Department of Teacher Education

University of Texas at El Paso
El Paso, TX 79968, USA
longpre@utep.edu, olgak@utep.edu, vladik@utep.edu

1. How to Gauge the Amount of Information: General Idea

- Our ultimate goal is to gain a complete knowledge of the world.
- In practice, we usually have only partial information.
- In other words, in practice, we have uncertainty.
- Additional information allows us to decrease this uncertainty.
- It is therefore reasonable to:
- gauge the amount of information in the new knowledge
- by how much this information decreases the original uncertainty.
- Uncertainty means that for some questions, we do not have a definite answer.
- Once we learn the answers to these questions, we thus decrease the original uncertainty.
- It is therefore reasonable to:

Finite Case

Finite Case with

How to Gauge .
Need to Distinguish
Such Distinction Is
Such Distinction Is .

How to Estimate the .
What If We Only Have .
Home Page

- Of course, not all questions are created equal:
- some can have a simple binary "yes" - "no" answer;
- some look for a more detailed answer - e.g., we can ask what is the value of a certain quantity.
- No matter what is the answer, we can describe this answer inside the computer.
- Everything in a computer is represented as 0 s and 1 s .
- estimate the amount of uncertainty
- by the number of questions needed to eliminate this uncertainty.

Title Page

- Everything in a computer is represented as 0 s and 1 s .
- So, each answer is a sequence of 0 s and 1 s .
- Such a several-bits question can be represented as a sequence of on-bit questions:
- we can first ask what is the first bit of the answer,
- we can then ask what is the second bit of the answer, etc.
- So, every question can thus be represented as a sequence of one-bit ("yes"-"no") questions.
- So, it is reasonable to:
- measure uncertainty
- by the smaller number of such "yes"- "no" questions which are needed to eliminate this uncertainty.

4. Finite Case

Finite Case

Finite Case with

How to Gauge .
Need to Distinguish
Such Distinction Is

Such Distinction Is

How to Estimate the
What If We Only Have
Home Page

- If we ask 2 binary questions, then we can get four possible combinations of answers ($00,01,10$, and 11).
- In general, if we ask q binary questions, then we can get 2^{q} possible combinations of answers.
- Thus, we can uniquely determine one of 2^{q} states.
- So, to identify one of n states, we need to ask q questions, where $2^{q} \geq N$.
- The smallest such q is $\left\lceil\log _{2}(N)\right\rceil$.

5. Finite Case with Known Probabilities

- So far, we considered the situation when we have n alternatives about whose frequency we know nothing.
- In practice, we often know the probabilities p_{1}, \ldots, p_{n} of different alternatives; in this case:
- instead of considering the worst-case number of binary questions needed to eliminate uncertainty,
- it is reasonable to consider the average number of questions.
- This value can be estimated as follows.
- We have a large number N of similar situations with n-uncertainty.
- In $N \cdot p_{1}$ of these situations, the actual state is State 1.
- In $N \cdot p_{2}$ of them, the actual state is State 2, etc.

6. Case of Known Probabilities (cont-d)

- The average number of binary questions can be obtained if we divide:
- the overall number of questions needed to determine the states in all N situations,
- by N.
- There are $\binom{N}{N \cdot p_{1}}=\frac{N!}{\left(N \cdot p_{1}\right)!\cdot\left(N-N \cdot p_{1}\right)!}$ ways to select the situations in State 1.
- Out of these, there are many ways to to select $N \cdot p_{2}$ situations in State 2:

$$
\binom{N-N \cdot p_{1}}{N \cdot p_{2}}=\frac{\left(N-N \cdot p_{1}\right)!}{\left(N \cdot p_{2}\right)!\cdot\left(N-N \cdot p_{1}-N \cdot p_{2}\right)!} .
$$

Finite Case

Finite Case with

How to Gauge

Need to Distinguish
Such Distinction Is

Such Distinction Is

How to Estimate the
What If We Only Have .
Home Page

Title Page

- So, the number A of possible arrangements is:
$\frac{N!}{\left(N \cdot p_{1}\right)!\cdot\left(N-N \cdot p_{1}\right)!} \cdot \frac{\left(N-N \cdot p_{1}\right)!}{\left(N \cdot p_{2}\right)!\cdot\left(N-N \cdot p_{1}-N \cdot p_{2}\right)!} \cdot \cdots$

7. Case of Known Probabilities (final)

Finite Case

Finite Case with

How to Gauge .

Need to Distinguish
Such Distinction Is

Such Distinction Is

How to Estimate the
What If We Only Have
Home Page

- Here, $m!\sim\left(\frac{m}{e}\right)^{m}$, so

$$
\log _{2}(m!) \sim m \cdot\left(\log _{2}(m)-\log _{2}(e)\right)
$$

- As a result, we get the usual Shannon's formula:

$$
\bar{q}=-\sum_{i=1}^{n} p_{i} \cdot \log _{2}\left(p_{i}\right)
$$

- In the continuous case, when the unknown(s) can take any of the infinitely many values from some interval.
- So, we need infinitely many binary questions to uniquely determine the exact value.
- It thus makes sense to determine each value with a given accuracy $\varepsilon>0$:
- we divide the real line into intervals $\left[x_{i}-\varepsilon, x_{i}+\varepsilon\right]$, where $x_{i+1}=x_{i}+2 \varepsilon$, and
- we want to find out to which of these intervals the actual value x belongs.
- For small ε, the probability p_{i} of belonging to the i-th interval is equal to $p_{i} \approx \rho\left(x_{i}\right) \cdot(2 \varepsilon)$.
- Substituting this expression for p_{i} into Shannon's formula, we get the following formula:

Finite Case

9. Continuous Case (cont-d)

$$
\begin{aligned}
& \bar{q}=-\sum_{i=1}^{n} p_{i} \cdot \log _{2}\left(p_{i}\right)=-\sum_{i=1}^{n} \rho\left(x_{i}\right) \cdot(2 \varepsilon) \cdot \log _{2}\left(\rho\left(x_{i}\right) \cdot(2 \varepsilon)\right), \text { i.e., } \\
& \bar{q}=-\sum_{i=1}^{n} \rho\left(x_{i}\right) \cdot(2 \varepsilon) \cdot \log _{2}\left(\rho\left(x_{i}\right)\right)-\sum_{i=1}^{n} \rho\left(x_{i}\right) \cdot(2 \varepsilon) \cdot \log _{2}(2 \varepsilon)
\end{aligned}
$$

Finite Case

Finite Case with

How to Gauge .

$-\sum_{i=1}^{n} \rho\left(x_{i}\right) \cdot \log _{2}\left(\rho\left(x_{i}\right)\right) \cdot(2 \varepsilon)=-\sum_{i=1}^{n} \rho\left(x_{i}\right) \cdot \log _{2}\left(\rho\left(x_{i}\right)\right) \cdot \Delta x_{i}$.
Title Page

- Thus, for small ε, it is practically equal to this interval.

10. Continuous Case (final)

- Similarly, the second term has the form

$$
-\sum_{i=1}^{n} \rho\left(x_{i}\right) \cdot(2 \varepsilon) \cdot \log _{2}(2 \varepsilon)=-\log _{2}(2 \varepsilon) \cdot \sum_{i=1}^{n} \rho\left(x_{i}\right) \cdot \Delta x_{i}
$$

Finite Case

Finite Case with

How to Gauge

- So, the average number of binary questions \bar{q} which is needed to determine x with accuracy ε is equal to

$$
\bar{q}=-\int \rho(x) \cdot \log _{2}(\rho(x)) d x-\log _{2}(2 \varepsilon) .
$$

- The first term does not depend on ε, and is, thus, a good measure of how much uncertainty we have.

Title Page

- This term is exactly Shannon's entropy.

How to Gauge the
11. Need to Distinguish Between Useful and Unimportant Information

- A similar formula holds in the multi-D case:

$$
S=-\int \rho(\vec{x}) \cdot \log _{2}(\rho(\vec{x})) d \vec{x} .
$$

- Not all information is created equal:
- some pieces of information are useful, while
- other pieces of information are unimportant.
- Whether the information is useful or not depends on what we plan to do with this information:
- if we want to predict weather, the smell of the fog is unimportant, while
- if we are analyzing pollution level, this is a very useful information.

Finite Case

Finite Case with
How to Gauge .
Need to Distinguish
Such Distinction Is

Such Distinction Is

How to Estimate the
What If We Only Have
Home Page

Title Page

12. Such Distinction Is Important for Privacy

- Ideally, no one can gain any information about a person without his or her explicit permission.
- Realistically, some information may be leaked.
- It is therefore important to distinguish the cases:
- when an important information was leaked and
- when an unimportant information was leaked.
- For example, disclosing the higher bits of the salaries would be a major violation of privacy.
- However, disclosing the lowest bits (number of cents) is mostly harmless.
- How to estimate the amount of useful information, that affects the utility of different alternatives?
- Psychological studies show that (almost) all students are capable of learning, with $\pm 10 \%$ difference.
- Groups originally viewed as inferior (e.g., girls) have shown equal abilities.
- However, the results of studying differ in orders of magnitude.
- To explain this difference, psychologists asked kids to recall everything they remember from the class.
- All kids recalled the same number of bits, but:
- good students recalled the class material, while
- failing students recalled mostly irrelevant details.
- This fact can be used to speed up learning, by blocking irrelevant information (e.g., no windows).

14. How to Estimate the Amount of Useful Information: A Suggestion

- According to decision theory, the usefulness of a situation x to a user can be described by utility $u(x)$.
- So, we propose to count the number of binary questions that are needed to determine $u(x)$ with $\varepsilon>0$.
- From this viewpoint, if some variable is irrelevant, then it does not affect the utility at all.
- So we should not waste binary questions trying to find the value of this variable.
- If some variable is slightly relevant, then its very crude estimate will give us ε-accuracy in $u(x)$.
- Therefore, few questions will be needed.
- On the other hand, if a variable is highly relevant, then we need exactly as many questions as before.
- In the 1-D case:
- if we know x with uncertainty Δx,

Finite Case

Finite Case with

How to Gauge .

x with accuracy $\Delta x=\frac{\varepsilon}{\left|u^{\prime}(x)\right|}$.

- In this case, we divide the real line into intervals

$$
\left[x_{i}-\frac{\varepsilon}{\left|u^{\prime}\left(x_{i}\right)\right|}, x_{i}+\frac{\varepsilon}{\left|u^{\prime}\left(x_{i}\right)\right|}\right] \text {, where } x_{i+1}=x_{i}+\frac{2 \varepsilon}{\left|u^{\prime}\left(x_{i}\right)\right|} \text {. }
$$

- For small ε, the probability p_{i} of belonging to the i-th interval is equal to
$p_{i} \approx \rho\left(x_{i}\right) \cdot \Delta x_{i}=\rho\left(x_{i}\right) \cdot \frac{2 \varepsilon}{\left|u^{\prime}\left(x_{i}\right)\right|}$, where $\Delta x_{i} \stackrel{\text { def }}{=} x_{i+1}-x_{i}$.

Title Page
44

16. 1-D Case (cont-d)

Finite Case

Finite Case with

- Substituting the expression for p_{i} into Shannon's formula, we get:
$\bar{q}=-\sum_{i=1}^{n} p_{i} \cdot \log _{2}\left(p_{i}\right)=-\sum_{i=1}^{n} \rho\left(x_{i}\right) \cdot \Delta x_{i} \cdot \log _{2}\left(\rho\left(x_{i}\right) \cdot \frac{2 \varepsilon}{\left|u^{\prime}\left(x_{i}\right)\right|}\right)=$
$-\sum_{i=1}^{n} \rho\left(x_{i}\right) \cdot \Delta x_{i} \cdot \log _{2}\left(\frac{\rho\left(x_{i}\right)}{\left|u^{\prime}\left(x_{i}\right)\right|}\right)-\sum_{i=1}^{n} \rho\left(x_{i}\right) \cdot \Delta x_{i} \cdot \log _{2}(2 \varepsilon)$.
How to Gauge
Need to Distinguish
Such Distinction Is .
Such Distinction Is.
How to Estimate the .
What If We Only Have .
Home Page

Title Page

- The first term is an integral sum for

$$
-\int \rho(x) \cdot \log _{2}\left(\frac{\rho(x)}{\left|u^{\prime}(x)\right|}\right) d x
$$

Page 17 of 22

- Thus, $\bar{q}=-\int \rho(x) \cdot \log _{2}\left(\frac{\rho(x)}{\left|u^{\prime}(x)\right|}\right) d x-\log _{2}(2 \varepsilon)$.

17. 1-D Case (final)

- We can thus view the corresponding term as an amount of useful information:

$$
S_{u} \stackrel{\text { def }}{=}-\int \rho(x) \cdot \log _{2}\left(\frac{\rho(x)}{\left|u^{\prime}(x)\right|}\right) d x .
$$

- Here, $S_{u}=S+\int \rho(x) \cdot \log _{2}\left(\left|u^{\prime}(x)\right|\right) d x$, where S is the traditional Shannon's entropy.
- The additional integral term is the mathematical expectation of $\log _{2}\left(\left|u^{\prime}(x)\right|\right)$.
- When $u(x)=x$, the new expression coincides with the traditional Shannon's entropy formula.
- The smaller the derivative $\left|u^{\prime}(x)\right|$:
- the less relevant the variable x, and
- the smaller the amount S_{u} of useful information.

Finite Case

Finite Case with

How to Gauge .

Need to Distinguish
Such Distinction Is

Such Distinction Is .
How to Estimate the .
What If We Only Have .
Home Page

- Hence, $\bar{q}=-\sum p_{i} \cdot \log _{2}\left(p_{i}\right)=S_{u}-\log _{2}(2 \varepsilon)$, where:

$$
\begin{gathered}
S_{u} \stackrel{\text { def }}{=}-\int \rho(\vec{x}) \cdot \log _{2}\left(\frac{\rho(\vec{x})}{\prod_{j=1}^{m}\left|u_{, j}(\vec{x})\right|}\right) d \vec{x}= \\
S+\sum_{i=1}^{m} \int \rho(\vec{x}) \cdot \log _{2}\left(\left|u_{, j}(\vec{x})\right|\right) d \vec{x}
\end{gathered}
$$

Page 19 of 22

Go Back

Full Screen

Close

19. What If We Only Have Partial Information About the Probabilities

- In practice, however, we only have partial information about the probabilities.
- Specifically, we do not know the exact value $\rho(\vec{x})$.
- Instead, we only know a lower bound $\underline{\rho}(\vec{x})$ and an upper bound $\bar{\rho}(\vec{x})$ on the actual (unknown) value $\rho(\vec{x})$:

$$
\rho(\vec{x}) \in[\underline{\rho}(\vec{x}), \bar{\rho}(\vec{x})] .
$$

- Many different probability distributions are consistent with this interval information.
- For different such distributions, in general, we get different values for the amount S_{u} of useful information.
- We do not know which of the distributions are more probable and which are less probable.

20. Case of Partial Information (cont-d)

- Thus, we do not know which values of S_{u} are more probable and which are less probable.
- It thus makes sense to characterize the uncertainty by the worst case scenario, i.e., by the largest S_{u} :

$$
\begin{gathered}
\bar{S}_{u} \stackrel{\text { def }}{=} \max \left\{S_{u}: \underline{\rho}(\vec{x}) \leq \rho(\vec{x}) \leq \bar{\rho}(\vec{x}) \text { for all } x\right. \text { and } \\
\left.\int \rho(\vec{x}) d \vec{x}=1\right\}
\end{gathered}
$$

Finite Case

Finite Case with

How to Gauge .
Need to Distinguish
Such Distinction Is
Such Distinction Is.

How to Estimate the
What If We Only Have .
Home Page

Title Page

- To find \bar{S}_{u}, we can use efficient convex optimization algorithms, since:
- the objective function S_{u} is concave and
- the corresponding domain is convex:
$\left\{\rho(\vec{x}): \underline{\rho}(\vec{x}) \leq \rho(\vec{x}) \leq \bar{\rho}(\vec{x})\right.$ for all x and $\left.\int \rho(\vec{x}) d \vec{x}=1\right\}$.

This work was supported in part:

- by the National Science Foundation grants
- HRD-0734825 and HRD-1242122
(Cyber-ShARE Center of Excellence) and
- DUE-0926721, and
- by an award from Prudential Foundation.

Title Page

44
Page 22 of 22

Go Back

Full Screen

Close

Quit

