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1. How to Gauge the Amount of Information:
General Idea

• Our ultimate goal is to gain a complete knowledge of
the world.

• In practice, we usually have only partial information.

• In other words, in practice, we have uncertainty.

• Additional information allows us to decrease this un-
certainty.

• It is therefore reasonable to:

– gauge the amount of information in the new knowl-
edge

– by how much this information decreases the original
uncertainty.

• Uncertainty means that for some questions, we do not
have a definite answer.
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2. Gauging Amount of Information (cont-d)

• Once we learn the answers to these questions, we thus
decrease the original uncertainty.

• It is therefore reasonable to:

– estimate the amount of uncertainty

– by the number of questions needed to eliminate this
uncertainty.

• Of course, not all questions are created equal:

– some can have a simple binary “yes”-“no” answer;

– some look for a more detailed answer – e.g., we can
ask what is the value of a certain quantity.

• No matter what is the answer, we can describe this
answer inside the computer.

• Everything in a computer is represented as 0s and 1s.
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3. Gauging Amount of Information (cont-d)

• Everything in a computer is represented as 0s and 1s.

• So, each answer is a sequence of 0s and 1s.

• Such a several-bits question can be represented as a
sequence of on-bit questions:

– we can first ask what is the first bit of the answer,

– we can then ask what is the second bit of the an-
swer, etc.

• So, every question can thus be represented as a se-
quence of one-bit (“yes”-“no”) questions.

• So, it is reasonable to:

– measure uncertainty

– by the smaller number of such “yes”-“no” questions
which are needed to eliminate this uncertainty.
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4. Finite Case

• Let us first consider the situation when we have finitely
many N alternatives.

• If we ask one binary question, then we can get two
possible answers (0 and 1).

• Thus, we can uniquely determine one of the two differ-
ent states.

• If we ask 2 binary questions, then we can get four pos-
sible combinations of answers (00, 01, 10, and 11).

• In general, if we ask q binary questions, then we can
get 2q possible combinations of answers.

• Thus, we can uniquely determine one of 2q states.

• So, to identify one of n states, we need to ask q ques-
tions, where 2q ≥ N .

• The smallest such q is dlog2(N)e.
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5. Finite Case with Known Probabilities

• So far, we considered the situation when we have n

alternatives about whose frequency we know nothing.

• In practice, we often know the probabilities p1, . . . , pn
of different alternatives; in this case:

– instead of considering the worst-case number of bi-
nary questions needed to eliminate uncertainty,

– it is reasonable to consider the average number of
questions.

• This value can be estimated as follows.

• We have a large number N of similar situations with
n-uncertainty.

• In N ·p1 of these situations, the actual state is State 1.

• In N · p2 of them, the actual state is State 2, etc.
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6. Case of Known Probabilities (cont-d)

• The average number of binary questions can be ob-
tained if we divide:

– the overall number of questions needed to deter-
mine the states in all N situations,

– by N .

• There are

(
N

N · p1

)
=

N !

(N · p1)! · (N −N · p1)!
ways to

select the situations in State 1.

• Out of these, there are many ways to to select N · p2
situations in State 2:(

N −N · p1
N · p2

)
=

(N −N · p1)!
(N · p2)! · (N −N · p1 −N · p2)!

.

• So, the number A of possible arrangements is:

N !

(N · p1)! · (N −N · p1)!
· (N −N · p1)!
(N · p2)! · (N −N · p1 −N · p2)!

·. . .
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7. Case of Known Probabilities (final)

• Thus, A =
N !

(N · p1)! · (N · p2)! · . . . · (N · pn)!
.

• To identify an arrangement, we need to ask the follow-
ing number of binary questions:

Q = log2(A) = log2(N !)−
n∑

i=1

log2((N · pi)!).

• Here, m! ∼
(m
e

)m
, so

log2(m!) ∼ m · (log2(m)− log2(e)).

• As a result, we get the usual Shannon’s formula:

q = −
n∑

i=1

pi · log2(pi).
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8. How to Gauge Uncertainty: Continuous Case

• In the continuous case, when the unknown(s) can take
any of the infinitely many values from some interval.

• So, we need infinitely many binary questions to
uniquely determine the exact value.

• It thus makes sense to determine each value with a
given accuracy ε > 0:

– we divide the real line into intervals [xi− ε, xi + ε],
where xi+1 = xi + 2ε, and

– we want to find out to which of these intervals the
actual value x belongs.

• For small ε, the probability pi of belonging to the i-th
interval is equal to pi ≈ ρ(xi) · (2ε).

• Substituting this expression for pi into Shannon’s for-
mula, we get the following formula:
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9. Continuous Case (cont-d)

q = −
n∑

i=1

pi·log2(pi) = −
n∑

i=1

ρ(xi)·(2ε)·log2(ρ(xi)·(2ε)), i.e.,

q = −
n∑

i=1

ρ(xi) · (2ε) · log2(ρ(xi))−
n∑

i=1

ρ(xi) · (2ε) · log2(2ε).

• The first term in this sum has the form

−
n∑

i=1

ρ(xi)·log2(ρ(xi))·(2ε) = −
n∑

i=1

ρ(xi)·log2(ρ(xi))·∆xi.

• This term is an integral sum for the interval

−
∫
ρ(x) · log2(ρ(x)) dx.

• Thus, for small ε, it is practically equal to this interval.
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10. Continuous Case (final)

• Similarly, the second term has the form

−
n∑

i=1

ρ(xi) · (2ε) · log2(2ε) = − log2(2ε) ·
n∑

i=1

ρ(xi) ·∆xi.

• The 2nd terms is, thus, an integral sum for

− log2(2ε) ·
∫
ρ(x) dx = − log2(2ε).

• So, the average number of binary questions q which is
needed to determine x with accuracy ε is equal to

q = −
∫
ρ(x) · log2(ρ(x)) dx− log2(2ε).

• The first term does not depend on ε, and is, thus, a
good measure of how much uncertainty we have.

• This term is exactly Shannon’s entropy.
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11. Need to Distinguish Between Useful and
Unimportant Information

• A similar formula holds in the multi-D case:

S = −
∫
ρ(~x) · log2(ρ(~x)) d~x.

• Not all information is created equal:

– some pieces of information are useful, while

– other pieces of information are unimportant.

• Whether the information is useful or not depends on
what we plan to do with this information:

– if we want to predict weather, the smell of the fog
is unimportant, while

– if we are analyzing pollution level, this is a very
useful information.
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12. Such Distinction Is Important for Privacy

• Ideally, no one can gain any information about a person
without his or her explicit permission.

• Realistically, some information may be leaked.

• It is therefore important to distinguish the cases:

– when an important information was leaked and

– when an unimportant information was leaked.

• For example, disclosing the higher bits of the salaries
would be a major violation of privacy.

• However, disclosing the lowest bits (number of cents)
is mostly harmless.

• How to estimate the amount of useful information, that
affects the utility of different alternatives?
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13. Such Distinction Is Important in Education

• Psychological studies show that (almost) all students
are capable of learning, with ±10% difference.

• Groups originally viewed as inferior (e.g., girls) have
shown equal abilities.

• However, the results of studying differ in orders of mag-
nitude.

• To explain this difference, psychologists asked kids to
recall everything they remember from the class.

• All kids recalled the same number of bits, but:

– good students recalled the class material, while

– failing students recalled mostly irrelevant details.

• This fact can be used to speed up learning, by blocking
irrelevant information (e.g., no windows).
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14. How to Estimate the Amount of Useful Infor-
mation: A Suggestion

• According to decision theory, the usefulness of a situ-
ation x to a user can be described by utility u(x).

• So, we propose to count the number of binary questions
that are needed to determine u(x) with ε > 0.

• From this viewpoint, if some variable is irrelevant, then
it does not affect the utility at all.

• So we should not waste binary questions trying to find
the value of this variable.

• If some variable is slightly relevant, then its very crude
estimate will give us ε-accuracy in u(x).

• Therefore, few questions will be needed.

• On the other hand, if a variable is highly relevant, then
we need exactly as many questions as before.
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15. Towards a Precise Definition: 1-D Case

• In the 1-D case:

– if we know x with uncertainty ∆x,

– then we know the utility with accuracy

u(x+ ∆x)− u(x) ≈ u′(x) ·∆x.

• Thus, to get u(x) with accuracy ε, we must determine

x with accuracy ∆x =
ε

|u′(x)|
.

• In this case, we divide the real line into intervals[
xi −

ε

|u′(xi)|
, xi +

ε

|u′(xi)|

]
, where xi+1 = xi+

2ε

|u′(xi)|
.

• For small ε, the probability pi of belonging to the i-th
interval is equal to

pi ≈ ρ(xi)·∆xi = ρ(xi)·
2ε

|u′(xi)|
, where ∆xi

def
= xi+1−xi.
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16. 1-D Case (cont-d)

• Substituting the expression for pi into Shannon’s for-
mula, we get:

q = −
n∑

i=1

pi·log2(pi) = −
n∑

i=1

ρ(xi)·∆xi·log2

(
ρ(xi) ·

2ε

|u′(xi)|

)
=

−
n∑

i=1

ρ(xi) ·∆xi · log2

(
ρ(xi)

|u′(xi)|

)
−

n∑
i=1

ρ(xi) ·∆xi · log2(2ε).

• The first term is an integral sum for

−
∫
ρ(x) · log2

(
ρ(x)

|u′(x)|

)
dx.

• Thus, q = −
∫
ρ(x) · log2

(
ρ(x)

|u′(x)|

)
dx− log2(2ε).
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17. 1-D Case (final)

• We can thus view the corresponding term as an amount
of useful information:

Su
def
= −

∫
ρ(x) · log2

(
ρ(x)

|u′(x)|

)
dx.

• Here, Su = S +
∫
ρ(x) · log2(|u′(x)|) dx, where S is the

traditional Shannon’s entropy.

• The additional integral term is the mathematical ex-
pectation of log2(|u′(x)|).

• When u(x) = x, the new expression coincides with the
traditional Shannon’s entropy formula.

• The smaller the derivative |u′(x)|:

– the less relevant the variable x, and

– the smaller the amount Su of useful information.
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18. Multi-D Case

• For each xj, the interval that guarantees accuracy ε in

u(x) has the width ∆xj =
2ε

|u,j|
, where u,j

def
=

∂u

∂xj
.

• Thus, we divide the m-dimensional space into zones of

volume ∆V =
(2ε)m

m∏
j=1

|u,j|
and prob. pi = ρ(~xi) ·∆V .

• Hence, q = −
∑
pi · log2(pi) = Su − log2(2ε), where:

Su
def
= −

∫
ρ(~x) · log2

 ρ(~x)
m∏
j=1

|u,j(~x)|

 d~x =

S +
m∑
i=1

∫
ρ(~x) · log2(|u,j(~x)|) d~x.
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19. What If We Only Have Partial Information
About the Probabilities

• In practice, however, we only have partial information
about the probabilities.

• Specifically, we do not know the exact value ρ(~x).

• Instead, we only know a lower bound ρ(~x) and an upper
bound ρ(~x) on the actual (unknown) value ρ(~x):

ρ(~x) ∈ [ρ(~x), ρ(~x)].

• Many different probability distributions are consistent
with this interval information.

• For different such distributions, in general, we get dif-
ferent values for the amount Su of useful information.

• We do not know which of the distributions are more
probable and which are less probable.
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20. Case of Partial Information (cont-d)

• Thus, we do not know which values of Su are more
probable and which are less probable.

• It thus makes sense to characterize the uncertainty by
the worst case scenario, i.e., by the largest Su:

Su
def
= max

{
Su : ρ(~x) ≤ ρ(~x) ≤ ρ(~x) for all x and∫

ρ(~x) d~x = 1

}
.

• To find Su, we can use efficient convex optimization
algorithms, since:

– the objective function Su is concave and

– the corresponding domain is convex:{
ρ(~x) : ρ(~x) ≤ ρ(~x) ≤ ρ(~x) for all x and

∫
ρ(~x) d~x = 1

}
.
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