Limitations of Realistic Monte-Carlo Techniques in Estimating Interval Uncertainty

Andrzej Pownuk, Olga Kosheleva, and Vladik Kreinovich
Computational Science Program
University of Texas at El Paso
El Paso, TX 79968, USA
ampownuk@utep.edu, olgak@utep.edu, vladik@utep.edu

Full Screen

- We want to predict the future state of the world, i.e., the future values y of different quantities.
- For this, we need to know how y depends on the current values x_{1}, \ldots, x_{n} of the related quantities:

$$
y=f\left(x_{1}, \ldots, x_{n}\right)
$$

- Then, we measure x_{i} and make a prediction

$$
\widetilde{y}=f\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)
$$

- Weather prediction shows that the data processing algorithm f can be very complex.
- Data processing is also needed if we are interested in a difficult-to-measure quantity y.
- To estimate y, we measure easier-to-measure quantities x_{1}, \ldots, x_{n} related to y by a known dependence

$$
y=f\left(x_{1}, \ldots, x_{n}\right)
$$

Close

2. Need to Take Uncertainty Into Account When Processing Data

- Measurement are never absolutely accurate: in general,

$$
\Delta x_{i} \xlongequal{\text { def }} \widetilde{x}_{i}-x_{i} \neq 0
$$

- As a result, the estimate $\widetilde{y}=f\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)$ is, in general, different from the ideal value $y=f\left(x_{1}, \ldots, x_{n}\right)$.

Need to Take.

Case of Interval.

- To estimate the accuracy $\Delta y \stackrel{\text { def }}{=} \widetilde{y}-y$, we need to have some information about the measurement errors Δx_{i}.
- Traditional engineering approach assumes that we know the probability distribution of each Δx_{i}.
- Often, $\Delta x_{i} \sim N\left(0, \sigma_{i}\right)$, and different Δx_{i} are assumed to be independent.
- In such situations, our goal is to find the probability distribution for Δy.

Title Page

- We want to find the range \mathbf{y} of possible values of y :

$$
\mathbf{y}=\left\{f\left(x_{1}, \ldots, x_{n}\right): x_{1} \in \mathbf{x}_{1}, \ldots, x_{n} \in \mathbf{x}_{n}\right\}
$$

- Often, measurement errors are relatively small.
- We can then only keep terms linear in Δx_{i} :

$$
\Delta y=\sum_{i=1}^{n} c_{i} \cdot \Delta x_{i}, \text { where } c_{i} \stackrel{\text { def }}{=} \frac{\partial f}{\partial x_{i}}
$$

- In this case, $\mathbf{y}=[\widetilde{y}-\Delta, \widetilde{y}+\Delta]$, where $\Delta=\sum_{i=1}^{n}\left|c_{i}\right| \cdot \Delta_{i}$.

Need for Data Processing
4. How to Compute the Interval Range:

- Sometimes, we have explicit expressions or efficient algorithms for the partial derivatives c_{i}.
- Often, however, we proprietary software in our computations.
- Then, we cannot use differentiation formulas or automatic differentiation (AD) tools.
- We can use numerical differentiation:

$$
c_{i} \approx \frac{f\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{i-1}, \widetilde{x}_{i}+h_{i}, \widetilde{x}_{i+1}, \ldots, \widetilde{x}_{n}\right)-\widetilde{y}}{h_{i}} .
$$

- Problem: We need $n+1$ calls to f, to compute \widetilde{y} and n values c_{i}.
- When f is time-consuming and n is large, this takes too long.

Need to Take

- Idea: use Cauchy distribution $\rho_{\Delta}(x)=\frac{\Delta}{\pi} \cdot \frac{1}{1+x^{2} / \Delta^{2}}$.
- Why: when $\Delta x_{i} \sim \rho_{\Delta_{i}}(x)$ are indep., then $\Delta y=\sum_{i=1}^{n} c_{i} \cdot \Delta x_{i} \sim \rho_{\Delta}(x)$, with $\Delta=\sum_{i=1}^{n}\left|c_{i}\right| \cdot \Delta_{i}$.
- Thus, we simulate $\Delta x_{i}^{(k)} \sim \rho_{\Delta_{i}}(x)$; then,

$$
\Delta y^{(k)} \stackrel{\text { def }}{=} \widetilde{y}-f\left(\widetilde{x}_{1}-\Delta x_{1}^{(k)}, \ldots\right) \sim \rho_{\Delta}(x)
$$

- Maximum Likelihood method can estimate Δ :

$$
\prod_{k=1}^{N} \rho_{\Delta}\left(\Delta y^{(k)}\right) \rightarrow \max , \text { so } \sum_{k=1}^{N} \frac{1}{1+\left(\Delta y^{(k)}\right)^{2} / \Delta^{2}}=\frac{N}{2}
$$

- To find Δ from this equation, we can use, e.g., the bisection method for $\underline{\Delta}=0$ and $\bar{\Delta}=\max _{1 \leq k \leq N}\left|\Delta y^{(k)}\right|$.

Title Page
6. Monte-Carlo: Successes and Limitations

- Fact: for Monte-Carlo, accuracy is $\varepsilon \sim 1 / \sqrt{N}$.
- Good news: the number N of calls to f depends only the desired accuracy ε.
- Example: to find Δ with accuracy 20% and certainty 95%, we need $N=200$ iterations.
- Limitation: this method is not realistic; indeed:

Need to Take

Case of Interval .

How to Compute the
A Faster Method:
Monte-Carlo:
Proof: Case of
General Case
Why Cauchy
Home Page

- we know that Δx_{i} is inside $\left[-\Delta_{i}, \Delta_{i}\right]$, but
- Cauchy-distributed variable has a high probability to be outside this interval.
- Natural question: is it a limitation of our method, or of a problem itself?
- Our answer: for interval uncertainty, a realistic MonteCarlo method is not possible.

Title Page

7. Proof : Case of Independent Variables

- It is sufficient to prove that we cannot get the correct estimate for one specific function $f\left(x_{1}, \ldots, x_{n}\right)=x_{1}+\ldots+x_{n}$, when $\Delta y=\Delta x_{1}+\ldots+\Delta x_{n}$.
- When each variables Δx_{i} is in the interval $[-\delta, \delta]$, then the range of Δy is $[-\Delta, \Delta]$, where $\Delta=n \cdot \delta$.

Need to Take.

Case of Interval .

- In Monte-Carlo, $\Delta y^{(k)}=\Delta x_{1}^{(k)}+\ldots+\Delta x_{n}^{(k)}$.
- $\Delta_{i}^{(k)}$ are i.i.d. Due to the Central Limit Theorem, when $n \rightarrow \infty$, the distribution of the sum tends to Gaussian.
- For a normal distribution, with very high confidence, $\Delta y \in[\mu-k \cdot \sigma, \mu+k \cdot \sigma]$.
- Here, $\sigma \sim \sqrt{n}$, so this interval has width $w \sim \sqrt{n}$.

```
Go Back
```

Full Screen

- However, the actual range of Δy is $\sim n \gg w$. Q.E.D.
- Let's take $f\left(x_{1}, \ldots, x_{n}\right)=s_{1} \cdot x_{1}+\ldots+s_{n} \cdot x_{n}$, where $s_{i} \in\{-1,1\}$.
- Then, $\Delta=\sum_{i=1}^{n}\left|c_{i}\right| \cdot \Delta_{i}=n \cdot \delta$.
- Let $\varepsilon>0, \delta>0$, and $p \in(0,1)$. We consider probability distributions P on the set of all vectors

General Case
Why Cauchy
Home Page

$$
\left(\Delta x_{1} \ldots, \Delta x_{n}\right) \in[-\delta, \delta] \times \ldots \times[-\delta, \delta]
$$

- We say that P is a (p, ε)-realistic Monte-Carlo estimation $(M C E)$ if for all $s_{i} \in\{-1,1\}$, we have

$$
\operatorname{Prob}\left(s_{1} \cdot \Delta x_{1}+\ldots+s_{n} \cdot \Delta x_{n} \geq n \cdot \delta \cdot(1-\varepsilon)\right) \geq p
$$

- For probability p_{n}, we need $1 / p_{n} \sim c^{-n}$ simulations more than $n+1$ for numerical differentiation.

Close

9. Why Cauchy Distribution: Formulation of the Problem

Need to Take.

Case of Interval

- We want to find a family of probability distributions with the following property:
- when independent X_{1}, \ldots, X_{n} have distributions from this family with parameters $\Delta_{1}, \ldots, \Delta_{n}$,
- then each $Y=c_{1} \cdot X_{1}+\ldots+c_{n} \cdot X_{n} \sim \Delta \cdot X$, where X corr. to parameter 1 , and $\Delta=\sum_{i=1}^{n}\left|c_{i}\right| \cdot \Delta_{i}$.
- In particular, for $\Delta_{1}=\ldots=\Delta_{n}=1$, the desired property of this probability distribution is as follows:
- if we have n independent identically distributed random variables X_{1}, \ldots, X_{n},
- then each $Y=c_{1} \cdot X_{1}+\ldots+c_{n} \cdot X_{n}$ has the same distribution as $\Delta \cdot X_{i}$, where $\Delta=\sum_{i=1}^{n}\left|c_{i}\right|$.

Need to Take

Case of Interval.

- When X_{i} are independent, then for $S=X_{1}+X_{2}$:

$$
\begin{gathered}
\chi_{S}(\omega)=E[\exp (\mathrm{i} \cdot \omega \cdot S)]=E\left[\exp \left(\mathrm{i} \cdot \omega \cdot\left(X_{1}+X_{2}\right)\right]=\right. \\
E\left[\exp \left(\mathrm{i} \cdot \omega \cdot X_{1}+\mathrm{i} \cdot \omega \cdot X_{2}\right)\right]= \\
E\left[\exp \left(\mathrm{i} \cdot \omega \cdot X_{1}\right) \cdot \exp \left(\mathrm{i} \cdot \omega \cdot X_{2}\right)\right]
\end{gathered}
$$

- Since X_{1} and X_{2} are independent,

$$
\chi_{S}(\omega)=E\left[\exp \left(\mathrm{i} \cdot \omega \cdot X_{1}\right)\right] \cdot E\left[\exp \left(\mathrm{i} \cdot \omega \cdot X_{2}\right)\right]=\chi_{X_{1}}(\omega) \cdot \chi_{X_{2}}(\omega)
$$

11. Analysis of the Problem (cont-d)

Need to Take.

Case of Interval

A Faster Method:

$$
\begin{gathered}
\chi_{Y}(\omega)=E[\exp (\mathrm{i} \cdot \omega \cdot Y)]=E\left[\exp \left(\mathrm{i} \cdot \omega \cdot \sum_{i=1}^{n} c_{i} \cdot X_{i}\right)\right]= \\
E\left[\prod_{i=1}^{n} \exp \left(\mathrm{i} \cdot \omega \cdot c_{i} \cdot X_{i}\right)\right]=\prod_{i=1}^{n} \chi_{X}\left(\omega \cdot c_{i}\right)
\end{gathered}
$$

- The desired property is $Y \sim \Delta \cdot X$, so

$$
\prod_{i=1}^{n} \chi_{X}\left(\omega \cdot c_{i}\right)=\chi_{\Delta \cdot X}(\omega)=E[\exp (\mathrm{i} \cdot \omega \cdot(\Delta \cdot X))] \chi_{X}(\omega \cdot \Delta)
$$

- In particular, for $n=1, c_{1}=-1$, we get $\chi_{X}(-\omega)=$ $\chi_{X}(\omega)$, so $\chi_{X}(\omega)$ should be an even function.

Monte-Carlo:

Proof: Case of.

General Case

Why Cauchy
Home Page

Title Page
44

$$
\text { so } \chi_{X}\left(c_{1} \cdot \omega\right) \cdot \ldots \cdot \chi_{X}\left(c_{n} \cdot \omega\right)=\chi_{X}\left(\left(\left|c_{1}\right|+\ldots+\left|c_{n}\right|\right) \cdot \omega\right)
$$

12. Analysis of the Problem (cont-d)

- Reminder:

$$
\chi_{X}\left(c_{1} \cdot \omega\right) \cdot \ldots \cdot \chi_{X}\left(c_{n} \cdot \omega\right)=\chi_{X}\left(\left(\left|c_{1}\right|+\ldots+\left|c_{n}\right|\right) \cdot \omega\right) .
$$

- For $n=2, c_{1}>0, c_{2}>0$, and $\omega=1$, we get

$$
\chi_{X}\left(c_{1}+c_{2}\right)=\chi_{X}\left(c_{1}\right) \cdot \chi_{X}\left(c_{2}\right)
$$

- The characteristic function should be measurable.
- Known: the only measurable functions with this property are $\chi_{X}(\omega)=\exp (-k \cdot \omega)$ for some k.
- Due to evenness, for a general ω, we get $\chi_{X}(\omega)=$ $\exp (-k \cdot|\omega|)$.
- By applying the inverse Fourier transform, we conclude that X is Cauchy distributed.
- Conclusion: so, only Cauchy distribution works.
- This work was supported in part:
- by the National Science Foundation grants:
- HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
- DUE-0926721, and
- by an award from the Prudential Foundation.
- The authors are thankful to Sergey Shary and to the anonymous referees for their valuable suggestions.

Need to Take

Case of Interval .

General Case

Why Cauchy
Home Page

Title Page

44

4

Page 14 of 21

Go Back

Full Screen

14. Proof of the Main Result

- Let us pick some $\alpha \in(0,1)$.
- Let us denote, by m, the number of indices i or which $s_{i} \cdot \Delta x_{i}>\alpha \cdot \delta$.
- If we have $s_{1} \cdot \Delta x_{1}+\ldots+s_{n} \cdot \Delta x_{n} \geq n \cdot \delta \cdot(1-\varepsilon)$, then:
- for $n-m$ indices, we have $s_{i} \cdot \Delta x_{i} \leq \alpha \cdot \delta$ and
- for the other m indices, we have $s_{i} \cdot \Delta x_{i} \leq \delta$.
- Thus, $n \cdot \delta \cdot(1-\varepsilon) \leq \sum_{i=1}^{n} s_{i} \cdot \Delta x_{i} \leq m \cdot \delta+(n-m) \cdot \alpha \cdot \delta$.
- Dividing this inequality by δ, we get

$$
n \cdot(1-\varepsilon) \leq m+(n-m) \cdot \alpha
$$

- So, $n \cdot(1-\alpha-\varepsilon) \leq m \cdot(1-\alpha)$ and $m \geq n \cdot \frac{1-\alpha-\varepsilon}{1-\alpha}$.

```
Go Back
```

Full Screen

- So, we have at least $n \cdot \frac{1-\alpha-\varepsilon}{1-\alpha}$ indices for which Δx_{i} has the same sign as s_{i} (and for which $\left.\left|\Delta x_{i}\right|>\alpha \cdot \delta\right)$.

Close

Need for Data Processing
15. Proof (cont-d)

- So, for Δx_{i} corr. to $\left(s_{1}, \ldots, s_{n}\right)$, at most $n \cdot \frac{\varepsilon}{1-\alpha-\varepsilon}$ indices have a different sign than s_{i}.
- It is possible that the same tuple Δx can serve two tuples $s \neq s^{\prime}$. In this case:
- going from s_{i} to $\operatorname{sign}\left(\Delta x_{i}\right)$ changes at most

$$
n \cdot \frac{\varepsilon}{1-\alpha-\varepsilon} \text { signs, and }
$$

- going from $\operatorname{sign}\left(\Delta x_{i}\right)$ to s_{i}^{\prime} also changes at most

$$
n \cdot \frac{\varepsilon}{1-\alpha-\varepsilon} \text { signs. }
$$

- Thus, between the tuples s and s^{\prime}, at most $2 \cdot \frac{\varepsilon}{1-\alpha-\varepsilon}$ signs are different.
- In other words, for the Hamming distance $d\left(s, s^{\prime}\right) \stackrel{\text { def }}{=}$ $\#\left\{i: s_{i} \neq s_{i}^{\prime}\right\}$, we have $d\left(s, s^{\prime}\right) \leq 2 \cdot n \cdot \frac{\varepsilon}{1-\alpha-\varepsilon}$.

Need to Take

Case of Interval

How to Compute the
A Faster Method:
Monte-Carlo:
Proof: Case of
General Case
Why Cauchy
Home Page

Title Page
4

- Thus, if $d\left(s, s^{\prime}\right)>2 \cdot n \cdot \frac{\varepsilon}{1-\alpha-\varepsilon}$, then no tuples $\left(\Delta x_{1}, \ldots, \Delta x_{n}\right)$ can serve both sign tuples s and s^{\prime}.
- In this case, the two sets of tuples Δx do not intersect:
- tuples s.t. $s_{1} \cdot \Delta x_{1}+\ldots+s_{n} \cdot \Delta x_{n} \geq n \cdot \delta \cdot(1-\varepsilon) ;$
- tuples s.t. $s_{1}^{\prime} \cdot \Delta x_{1}+\ldots+s_{n}^{\prime} \cdot \Delta x_{n} \geq n \cdot \delta \cdot(1-\varepsilon)$.

Need to Take

Case of Interval.

- Let's take take M sign tuples $s^{(1)}, \ldots, s^{(M)}$ for which $d\left(s^{(i)}, s^{(j)}\right)>2 \cdot \frac{\varepsilon}{1-\alpha-\varepsilon}$ for all $i \neq j$.

Title Page

- Then the probability P that Δx serves one of these sign tuples is $\geq M \cdot p$.
- Since $P \leq 1$, we have $p \leq \frac{1}{M}$; so:
- to prove that p_{n} is exponentially decreasing,
- it is sufficient to find the sign tuples whose number M is exponentially increasing.

17. Proof (cont-d)

- Let us denote $\beta \stackrel{\text { def }}{=} \frac{\varepsilon}{1-\alpha-\varepsilon}$.
- Then, for each sign tuple s, the number t of all sign tuples s^{\prime} for which $d\left(s, s^{\prime}\right) \leq \beta \cdot n$ is equal to the sum of:
- the number of tuples $\binom{n}{0}$ that differ from s in 0 places,
- the number of tuples $\binom{n}{1}$ that differ from s in 1 place, ... ,
- the number of tuples $\binom{n}{\beta \cdot n}$ that differ from s in $\beta \cdot n$ places,
- Thus, $t=\binom{n}{0}+\binom{n}{1}+\ldots+\binom{n}{n \cdot \beta}$.

Need to Take

Case of Interval

18. Proof (cont-d)

- When $\beta<0.5$ and $\beta \cdot n<\frac{n}{2}$, the number of combinations $\binom{n}{k}$ increases with k, so $t \leq \beta \cdot n \cdot\binom{n}{\beta \cdot n}$.
- Here, $\binom{a}{b}=\frac{a!}{b!\cdot(a-b)!}$. Since $n!\sim\left(\frac{n}{e}\right)^{n}$, we have

$$
t \leq \beta \cdot n \cdot\left(\frac{1}{\beta^{\beta} \cdot(1-\beta)^{1-\beta}}\right)^{n}
$$

- Here, $\gamma \stackrel{\text { def }}{=} \frac{1}{\beta^{\beta} \cdot(1-\beta)^{1-\beta}}=\exp (S)$, where $S \stackrel{\text { def }}{=}-\beta$. $\ln (\beta)-(1-\beta) \cdot \ln (1-\beta)$ is Shannon's entropy.
- It is known that S attains its largest value when $\beta=$ 0.5 , in which case $S=\ln (2)$ and $\gamma=\exp (S)=2$.
- When $\beta<0.5$, we have $S<\ln (2)$, thus, $\gamma<2$, and $t \leq \beta \cdot n \cdot \gamma^{n}$ for some $\gamma<2$.

19. Proof (cont-d)

- Let us now construct the desired collection of sign tuples $s^{(1)}, \ldots, s^{(M)}$.
- We start with some sign tuple $s^{(1)}$, e.g., $s^{(1)}=$ $(1, \ldots, 1)$.
- Then, we dismiss $t \leq \gamma^{n}$ tuples which are $\leq \beta$-close to s, and select one of the remaining tuples as $s^{(2)}$.
- We then dismiss $t \leq \gamma^{n}$ tuples which are $\leq \beta$-close to $s^{(2)}$.
- Among the remaining tuples, we select the tuple $s^{(3)}$, etc.
- Once we have selected M tuples, we have thus dismissed $t \cdot M \leq \beta \cdot n \cdot \gamma^{n} \cdot M$ sign tuples.
- So, as long as this number is smaller than the overall number 2^{n} of sign tuples, we can continue selecting.

Need to Take

Case of Interval

- Our procedure ends when we have selected M tuples for which $\beta \cdot n \cdot \gamma^{n} \cdot M \geq 2^{n}$.
- Thus, we have selected $M \geq\left(\frac{2}{\gamma}\right)^{n} \cdot \frac{1}{\beta \cdot n}$ tuples.
- So, we have indeed selected exponentially many tuples.
- Hence, $p_{n} \leq \frac{1}{M} \leq \beta \cdot n \cdot\left(\frac{\gamma}{2}\right)^{n}$, i.e.,

Home Page

Title Page
44

```
4
```

