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1. Need for Data Processing

• We want to predict the future state of the world, i.e.,
the future values y of different quantities.

• For this, we need to know how y depends on the current
values x1, . . . , xn of the related quantities:

y = f(x1, . . . , xn).

• Then, we measure xi and make a prediction

ỹ = f(x̃1, . . . , x̃n).

• Weather prediction shows that the data processing al-
gorithm f can be very complex.

• Data processing is also needed if we are interested in a
difficult-to-measure quantity y.

• To estimate y, we measure easier-to-measure quantities
x1, . . . , xn related to y by a known dependence

y = f(x1, . . . , xn).
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2. Need to Take Uncertainty Into Account When
Processing Data

• Measurement are never absolutely accurate: in general,

∆xi
def
= x̃i − xi 6= 0.

• As a result, the estimate ỹ = f(x̃1, . . . , x̃n) is, in gen-
eral, different from the ideal value y = f(x1, . . . , xn).

• To estimate the accuracy ∆y
def
= ỹ−y, we need to have

some information about the measurement errors ∆xi.

• Traditional engineering approach assumes that we
know the probability distribution of each ∆xi.

• Often, ∆xi ∼ N(0, σi), and different ∆xi are assumed
to be independent.

• In such situations, our goal is to find the probability
distribution for ∆y.
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3. Case of Interval Uncertainty

• Often, we only know the upper bound ∆i: |∆xi| ≤ ∆i.

• Then, the only information about the xi is that

xi ∈ xi
def
= [x̃i −∆i, x̃i + ∆i].

• Different xi ∈ xi lead, in general, to different
y = f(x1, . . . , xn).

• We want to find the range y of possible values of y:

y = {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}.

• Often, measurement errors are relatively small.

• We can then only keep terms linear in ∆xi:

∆y =
n∑
i=1

ci ·∆xi, where ci
def
=

∂f

∂xi
.

• In this case, y = [ỹ−∆, ỹ+ ∆], where ∆ =
n∑
i=1

|ci| ·∆i.
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4. How to Compute the Interval Range:
Linearized Case

• Sometimes, we have explicit expressions or efficient al-
gorithms for the partial derivatives ci.

• Often, however, we proprietary software in our compu-
tations.

• Then, we cannot use differentiation formulas or auto-
matic differentiation (AD) tools.

• We can use numerical differentiation:

ci ≈
f(x̃1, . . . , x̃i−1, x̃i + hi, x̃i+1, . . . , x̃n)− ỹ

hi
.

• Problem: We need n + 1 calls to f , to compute ỹ and
n values ci.

• When f is time-consuming and n is large, this takes
too long.
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5. A Faster Method: Cauchy-Based Monte-Carlo

• Idea: use Cauchy distribution ρ∆(x) =
∆

π
· 1

1 + x2/∆2
.

• Why: when ∆xi ∼ ρ∆i
(x) are indep., then

∆y =
n∑
i=1

ci ·∆xi ∼ ρ∆(x), with ∆ =
n∑
i=1

|ci| ·∆i.

• Thus, we simulate ∆x
(k)
i ∼ ρ∆i

(x); then,

∆y(k) def
= ỹ − f(x̃1 −∆x

(k)
1 , . . .) ∼ ρ∆(x).

• Maximum Likelihood method can estimate ∆:
N∏
k=1

ρ∆(∆y(k))→ max, so
N∑
k=1

1

1 + (∆y(k))2/∆2
=
N

2
.

• To find ∆ from this equation, we can use, e.g., the
bisection method for ∆ = 0 and ∆ = max

1≤k≤N
|∆y(k)|.
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6. Monte-Carlo: Successes and Limitations

• Fact: for Monte-Carlo, accuracy is ε ∼ 1/
√
N .

• Good news: the number N of calls to f depends only
the desired accuracy ε.

• Example: to find ∆ with accuracy 20% and certainty
95%, we need N = 200 iterations.

• Limitation: this method is not realistic; indeed:

– we know that ∆xi is inside [−∆i,∆i], but

– Cauchy-distributed variable has a high probability
to be outside this interval.

• Natural question: is it a limitation of our method, or
of a problem itself?

• Our answer: for interval uncertainty, a realistic Monte-
Carlo method is not possible.
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7. Proof : Case of Independent Variables

• It is sufficient to prove that we cannot get the correct
estimate for one specific function

f(x1, . . . , xn) = x1+. . .+xn, when ∆y = ∆x1+. . .+∆xn.

• When each variables ∆xi is in the interval [−δ, δ], then
the range of ∆y is [−∆,∆], where ∆ = n · δ.

• In Monte-Carlo, ∆y(k) = ∆x
(k)
1 + . . .+ ∆x

(k)
n .

• ∆
(k)
i are i.i.d. Due to the Central Limit Theorem, when

n→∞, the distribution of the sum tends to Gaussian.

• For a normal distribution, with very high confidence,
∆y ∈ [µ− k · σ, µ+ k · σ].

• Here, σ ∼
√
n, so this interval has width w ∼

√
n.

• However, the actual range of ∆y is ∼ n� w. Q.E.D.
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8. General Case

• Let’s take f(x1, . . . , xn) = s1 · x1 + . . .+ sn · xn, where
si ∈ {−1, 1}.

• Then, ∆ =
n∑
i=1

|ci| ·∆i = n · δ.

• Let ε > 0, δ > 0, and p ∈ (0, 1). We consider proba-
bility distributions P on the set of all vectors

(∆x1 . . . ,∆xn) ∈ [−δ, δ]× . . .× [−δ, δ].

• We say that P is a (p, ε)-realistic Monte-Carlo estima-
tion (MCE) if for all si ∈ {−1, 1}, we have

Prob(s1 ·∆x1 + . . .+ sn ·∆xn ≥ n · δ · (1− ε)) ≥ p.

• Result. If for every n, we have a (pn, ε)-realistic
MCE, then pn ≤ β · n · cn for some β > 0 and c < 1.

• For probability pn, we need 1/pn ∼ c−n simulations –
more than n+ 1 for numerical differentiation.
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9. Why Cauchy Distribution: Formulation of the
Problem

• We want to find a family of probability distributions
with the following property:

– when independent X1, . . . , Xn have distributions
from this family with parameters ∆1, . . . ,∆n,

– then each Y = c1 ·X1 + . . .+ cn ·Xn ∼ ∆ ·X, where

X corr. to parameter 1, and ∆ =
n∑
i=1

|ci| ·∆i.

• In particular, for ∆1 = . . . = ∆n = 1, the desired
property of this probability distribution is as follows:

– if we have n independent identically distributed
random variables X1, . . . , Xn,

– then each Y = c1 ·X1 + . . .+ cn ·Xn has the same

distribution as ∆ ·Xi, where ∆ =
n∑
i=1

|ci|.
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10. Analysis of the Problem

• For n = 1 and c1 = −1, the desired property says that
−X ∼ X, the distribution is even.

• A usual way to describe a probability distribution is to
use a probability density function ρ(x).

• Often, it is convenient to use its Fourier transform –

the characteristic function χX(ω)
def
= E[exp(i · ω ·X)].

• When Xi are independent, then for S = X1 +X2:

χS(ω) = E[exp(i · ω · S)] = E[exp(i · ω · (X1 +X2)] =

E[exp(i · ω ·X1 + i · ω ·X2)] =

E[exp(i · ω ·X1) · exp(i · ω ·X2)].

• Since X1 and X2 are independent,

χS(ω) = E[exp(i·ω·X1)]·E[exp(i·ω·X2)] = χX1
(ω)·χX2

(ω).
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11. Analysis of the Problem (cont-d)

• Similarly, for Y =
n∑
i=1

ci ·Xi, we have

χY (ω) = E[exp(i·ω·Y )] = E

[
exp

(
i · ω ·

n∑
i=1

ci ·Xi

)]
=

E

[
n∏
i=1

exp (i · ω · ci ·Xi)

]
=

n∏
i=1

χX(ω · ci).

• The desired property is Y ∼ ∆ ·X, so

n∏
i=1

χX(ω·ci) = χ∆·X(ω) = E[exp(i·ω·(∆·X))]χX(ω·∆),

so χX(c1 ·ω) · . . . ·χX(cn ·ω) = χX((|c1|+ . . .+ |cn|) ·ω).

• In particular, for n = 1, c1 = −1, we get χX(−ω) =
χX(ω), so χX(ω) should be an even function.
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12. Analysis of the Problem (cont-d)

• Reminder:

χX(c1 · ω) · . . . · χX(cn · ω) = χX((|c1|+ . . .+ |cn|) · ω).

• For n = 2, c1 > 0, c2 > 0, and ω = 1, we get

χX(c1 + c2) = χX(c1) · χX(c2).

• The characteristic function should be measurable.

• Known: the only measurable functions with this prop-
erty are χX(ω) = exp(−k · ω) for some k.

• Due to evenness, for a general ω, we get χX(ω) =
exp(−k · |ω|).

• By applying the inverse Fourier transform, we conclude
that X is Cauchy distributed.

• Conclusion: so, only Cauchy distribution works.
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14. Proof of the Main Result

• Let us pick some α ∈ (0, 1).

• Let us denote, by m, the number of indices i or which
si ·∆xi > α · δ.
• If we have s1 ·∆x1 + . . .+sn ·∆xn ≥ n · δ · (1−ε), then:

– for n−m indices, we have si ·∆xi ≤ α · δ and

– for the other m indices, we have si ·∆xi ≤ δ.

• Thus, n · δ · (1− ε) ≤
n∑
i=1

si ·∆xi ≤ m · δ+ (n−m) ·α · δ.

• Dividing this inequality by δ, we get

n · (1− ε) ≤ m+ (n−m) · α.

• So, n · (1−α− ε) ≤ m · (1−α) and m ≥ n · 1− α− ε
1− α

.

• So, we have at least n · 1− α− ε
1− α

indices for which ∆xi

has the same sign as si (and for which |∆xi| > α · δ).
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15. Proof (cont-d)

• So, for ∆xi corr. to (s1, . . . , sn), at most n · ε

1− α− ε
indices have a different sign than si.

• It is possible that the same tuple ∆x can serve two
tuples s 6= s′. In this case:

– going from si to sign(∆xi) changes at most

n · ε

1− α− ε
signs, and

– going from sign(∆xi) to s′i also changes at most

n · ε

1− α− ε
signs.

• Thus, between the tuples s and s′, at most 2· ε

1− α− ε
signs are different.

• In other words, for the Hamming distance d(s, s′)
def
=

#{i : si 6= s′i}, we have d(s, s′) ≤ 2 · n · ε

1− α− ε
.
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16. Proof (cont-d)

• Thus, if d(s, s′) > 2 · n · ε

1− α− ε
, then no tuples

(∆x1, . . . ,∆xn) can serve both sign tuples s and s′.

• In this case, the two sets of tuples ∆x do not intersect:

– tuples s.t. s1 ·∆x1 + . . .+ sn ·∆xn ≥ n · δ · (1− ε);
– tuples s.t. s′1 ·∆x1 + . . .+ s′n ·∆xn ≥ n · δ · (1− ε).

• Let’s take take M sign tuples s(1), . . . , s(M) for which

d(s(i), s(j)) > 2 · ε

1− α− ε
for all i 6= j.

• Then the probability P that ∆x serves one of these
sign tuples is ≥M · p.

• Since P ≤ 1, we have p ≤ 1

M
; so:

– to prove that pn is exponentially decreasing,

– it is sufficient to find the sign tuples whose number
M is exponentially increasing.
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17. Proof (cont-d)

• Let us denote β
def
=

ε

1− α− ε
.

• Then, for each sign tuple s, the number t of all sign
tuples s′ for which d(s, s′) ≤ β · n is equal to the sum
of:

– the number of tuples

(
n

0

)
that differ from s in 0

places,

– the number of tuples

(
n

1

)
that differ from s in 1

place, . . . ,

– the number of tuples

(
n

β · n

)
that differ from s in

β · n places,

• Thus, t =

(
n

0

)
+

(
n

1

)
+ . . .+

(
n

n · β

)
.
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18. Proof (cont-d)

• When β < 0.5 and β · n < n

2
, the number of combina-

tions

(
n

k

)
increases with k, so t ≤ β · n ·

(
n

β · n

)
.

• Here,

(
a

b

)
=

a!

b! · (a− b)!
. Since n! ∼

(n
e

)n
, we have

t ≤ β · n ·
(

1

ββ · (1− β)1−β

)n
.

• Here, γ
def
=

1

ββ · (1− β)1−β = exp(S), where S
def
= −β ·

ln(β)− (1− β) · ln(1− β) is Shannon’s entropy.

• It is known that S attains its largest value when β =
0.5, in which case S = ln(2) and γ = exp(S) = 2.

• When β < 0.5, we have S < ln(2), thus, γ < 2, and
t ≤ β · n · γn for some γ < 2.
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19. Proof (cont-d)

• Let us now construct the desired collection of sign tu-
ples s(1), . . . , s(M).

– We start with some sign tuple s(1), e.g., s(1) =
(1, . . . , 1).

– Then, we dismiss t ≤ γn tuples which are ≤ β-close
to s, and select one of the remaining tuples as s(2).

– We then dismiss t ≤ γn tuples which are ≤ β-close
to s(2).

– Among the remaining tuples, we select the tuple
s(3), etc.

• Once we have selected M tuples, we have thus dis-
missed t ·M ≤ β · n · γn ·M sign tuples.

• So, as long as this number is smaller than the overall
number 2n of sign tuples, we can continue selecting.
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20. Proof (conclusion9)

• Our procedure ends when we have selected M tuples
for which β · n · γn ·M ≥ 2n.

• Thus, we have selected M ≥
(

2
γ

)n
· 1

β · n
tuples.

• So, we have indeed selected exponentially many tuples.

• Hence, pn ≤
1

M
≤ β · n ·

(γ
2

)n
, i.e.,

pn ≤ β · n · cn, where c
def
=
γ

2
< 1.

• So, the probability pn is indeed exponentially decreas-
ing. The main result is proven.
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