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1.

Need for Data Processing

e We want to predict the future state of the world, i.e.,
the future values y of different quantities.

e For this, we need to know how y depends on the current
values x1, ..., x, of the related quantities:

y=flx1,...,2,).
e Then, we measure z; and make a prediction
y=f(T1,...,7,).

e Weather prediction shows that the data processing al-
gorithm f can be very complex.

e Data processing is also needed if we are interested in a
difficult-to-measure quantity .

e To estimate y, we measure easier-to-measure quantities
x1,...,T, related to y by a known dependence

y=f(x1,...,2,).

Need for Data Processing




2.

Need to Take Uncertainty Into Account When
Processing Data

e Measurement are never absolutely accurate: in general,

AZEZ' déf Ei‘/z — T 7é 0.
e As a result, the estimate y = f(Z1,...,%,) is, in gen-
eral, different from the ideal value y = f(x1,...,z,).

. def ~
e To estimate the accuracy Ay = y —y, we need to have
some information about the measurement errors Az;.

e Traditional engineering approach assumes that we
know the probability distribution of each Ax;.

e Often, Ax; ~ N(0,0;), and different Ax; are assumed
to be independent.

e In such situations, our goal is to find the probability
distribution for Ay.

Need to Take. ..




3. Case of Interval Uncertainty

Case of Interval. ..

e Often, we only know the upper bound A;: |Az;| < A,.

e Then, the only information about the x; is that

def ~ ~
T, € X; = [ZBZ — A, T+ Az]

e Different z; € x; lead, in general, to different
y= f(z1,...,2,).
e We want to find the range y of possible values of y:
y={f(x1,...,2,) 1 11 €EX1,...,2, € Xp}.
e Often, measurement errors are relatively small.

e We can then only keep terms linear in Az;:

n o 8
Ay = > ¢ - Ax;, where ¢; dof / )
=1 0w,

e In this case, y = [y — A,y + A}, where A = > |¢;] - A,
i=1




4.

How to Compute the Interval Range:
Linearized Case

e Sometimes, we have explicit expressions or efficient al-
gorithms for the partial derivatives c;.

e Often, however, we proprietary software in our compu-
tations.

e Then, we cannot use differentiation formulas or auto-
matic differentiation (AD) tools.

e We can use numerical differentiation:

~

f(%l, . ,Ei—ly Ez + hi, fﬂ_l, . ,571) -
h; '

C; =
e Problem: We need n + 1 calls to f, to compute y and

n values ¢;.

e When f is time-consuming and n is large, this takes
too long.

How to Compute the. ..




5. A Faster Method: Cauchy-Based Monte-Carlo

A 1

e /dea: use Cauchy distribution r)=—+ —
y pA( > T 1 + :L‘z/A2 A Faster Method: . ..

o Why: when Az; ~ pa,(x) are indep., then
Ay => ¢ - Ax; ~ pa(x), with A = > || - A
i=1 i=1
e Thus, we simulate Axgk) ~ pa,(x); then,
Ay® LG — f(@ - A, ) ~ pale),
° 1\]/Ivaximum Likelihood metlj\lfod can estimate A:

1 N

Ay*)) = max, so = —

L palB9T) = ek so 2 TRy @R 2
e To find A from this equation, we can use, e.g., the

bisection method for A = 0 and A = max |Ay*)|.
1<k<N




6.

Monte-Carlo: Successes and Limitations

e Fuct: for Monte-Carlo, accuracy is € ~ 1/ V/N.

e Good news: the number N of calls to f depends only
the desired accuracy e¢.

e Example: to find A with accuracy 20% and certainty
95%, we need N = 200 iterations.

e Limatation: this method is not realistic; indeed:

— we know that Ax; is inside [—A;, A;], but

— Cauchy-distributed variable has a high probability
to be outside this interval.

e Natural question: is it a limitation of our method, or
of a problem itself?

e Our answer: for interval uncertainty, a realistic Monte-
Carlo method is not possible.

Monte-Carlo: . . .




7. Proof : Case of Independent Variables

e It is sufficient to prove that we cannot get the correct
estimate for one specific function

f(x1,...,x,) = x1+. . .4z, when Ay = Axqy+. . .+Az,.

Proof : Case of. ..

e When each variables Az; is in the interval [—4, d], then
the range of Ay is [—A, A], where A =n - .
(k)

e In Monte-Carlo, Ay(k) = Axik) + ...+ Axy.

—

° Agk) are i.i.d. Due to the Central Limit Theorem, when
n — 00, the distribution of the sum tends to Gaussian.

e For a normal distribution, with very high confidence,
Ayelp—Fk-o,u+k-ol.

e Here, 0 ~ y/n, so this interval has width w ~ /n.

e However, the actual range of Ay is ~n > w. Q.E.D.




8.

General Case

o Let’s take f(x1,...,2,) =81 21+ ...+ S, - T, where
S; € {—1, ].}

e Then, A =>"|¢|-A;=n-4d.
i=1

e lete>0,0>0,and p € (0,1). We consider proba-
bility distributions P on the set of all vectors

(Azy...,Axy,) € [—0,0] x ... x [=9,d].

e We say that P is a (p, €)-realistic Monte-Carlo estima-
tion (MCE) if for all s; € {—1, 1}, we have
Prob(s; - Azxi+ ...+ 8, - Az, >n-d- (1 —¢)) > p.
e Result. If for every n, we have a (py,,e)-realistic

MCE, then p, < -n-c" for some >0 and c < 1.

e For probability p,, we need 1/p, ~ ¢ " simulations —
more than n + 1 for numerical differentiation.

General Case

S

o
Kl X




9. Why Cauchy Distribution: Formulation of the
Problem

e We want to find a family of probability distributions
with the following property:

— when independent Xi,..., X, have distributions
from this family with parameters Aq, ..., A,,
Why Cauchy. ..
— th hY =c¢-X1+... X, ~A-X, wh =
en eac c1-X1+...+¢y %” | , Where {—
X corr. to parameter 1, and A = cil - A =
= 1 1
e In particular, for A; = ... = A, = 1, the desired
property of this probability distribution is as follows: K

—if we have n independent identically distributed
random variables X7, ..., X,

—theneach Y =¢; - X7 +... + ¢, - X,, has the same
distribution as A - X;, where A = > |¢].
i=1




10. Analysis of the Problem

e For n =1 and ¢; = —1, the desired property says that
—X ~ X, the distribution is even.

e A usual way to describe a probability distribution is to
use a probability density function p(x).

e Often, it is convenient to use its Fourier transform —

the characteristic function x x(w) = Elexp(i-w - X)].
e When X; are independent, then for S = X7 + X5:
Xs(w) = Elexp(i-w-S)] = Elexp(i-w- (X1 + Xo)] =
FElexp(i-w- X1 +1i-w-Xy)] =
Elexp(i-w- X3) -exp(i-w- X5)].
e Since X7 and X, are independent,

xs(w) = Flexp(i-w-X1)]-Elexp(i-w-X2)] = xx,(w) Xxx,(w).




11. Analysis of the Problem (cont-d)

e Similarly, for Y = > ¢; - X;, we have

i=1
exp (i-w~ZCi°Xi)] =
i=1

Hexp 1-w-¢- HXXW ci).

e The desired property is Y ~ A - X, so

xy (W) = Elexp(iwY)] = FE

HXX(W'Cz') = xa.x(w) = Elexp(i-w-(A-X))]xx(w-A),

so xx(c1-w)-...-xx(cn-w) = xx((lei]| 4. .. +]enl) - w).

e In particular, for n = 1, ¢y = —1, we get xx(—w) =
Xx(w), so xx(w) should be an even function.




12. Analysis of the Problem (cont-d)

e Reminder:
xx(cr-w) oo xx(en-w) = xx((la] + ... +]ea]) - w).
eForn=2,¢1>0,co>0,and w=1, we get
xx(c1+¢e2) = xx(c1) - xx(c2).

e The characteristic function should be measurable.

e Known: the only measurable functions with this prop-
erty are xx(w) = exp(—k - w) for some k.

e Due to evenness, for a general w, we get yx(w) =
exp(—Fk - |w|).

e By applying the inverse Fourier transform, we conclude
that X is Cauchy distributed.

e Conclusion: so, only Cauchy distribution works.
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14. Proof of the Main Result

e Let us pick some a € (0,1).
e Let us denote, by m, the number of indices 7 or which
s;+ Ax; > - 9.
e If we have s1-Axy1+...4+s,- Az, >n-6-(1—¢), then:
— for n — m indices, we have s; - Az; < a -9 and
— for the other m indices, we have s; - Az; <.
e Thus,n-§-(1—¢) <> s;-Ax; <m-6+(n—m)-«a-0.
i=1
e Dividing this inequality by d, we get
n-(l—eg)<m+(n-—m)-a.
1 — o —
eSo,n-(l—a—¢e)<m-(1—a)and m > n-#
—«

1 — a —
e So, we have at least n - %6 indices for which Ax;

—
has the same sign as s; (and for which |Az;| > « - §).




15. Proof (cont-d)

€
e So, for Az; corr. to (si,...,5,), at most n - 1
—a—c¢

indices have a different sign than s;.

e It is possible that the same tuple Az can serve two
tuples s # s'. In this case:

— going from s; to sign(Ax;) changes at most
5

n - signs, and
l—a—c¢
— going from sign(Ax;) to s, also changes at most
n - —————— signs.
l—a—c¢
€
e Thus, between the tuples s and s’, at most 2-
—a—¢
signs are different.

e In other words, for the Hamming distance d(s, s) o

s £ ) we have d(s, §) < 2-n - .
#{i:s; # s}, we have d(s,s') <2-n Tp—




16. Proof (cont-d)

e Thus, if d(s,s’) > 2-n - %, then no tuples
—a—c
(Azy,...,Ax,) can serve both sign tuples s and s’

e In this case, the two sets of tuples Az do not intersect:
—tuples s.t. 81 - Axy+ ...+ 5, - Az, >n-d- (1 —¢);
—tuples s.t. 8§ - Axy+ ...+, - Az, >n-d- (1 —¢).

e Let’s take take M sign tuples s, ..., s™M) for which

d(s®, 1)) > 2. ﬁ for all i # j.

e Then the probability P that Az serves one of these
sign tuples is > M - p.

e Since P < 1, we have p < M; SO:

— to prove that p, is exponentially decreasing,

— it is sufficient to find the sign tuples whose number
M is exponentially increasing.




17. Proof (cont-d)

€
e Let us denote L
l—a—-c¢

e Then, for each sign tuple s, the number ¢ of all sign
tuples s for which d(s,s’) < - n is equal to the sum
of:

— the number of tuples (g) that differ from s in 0

places,

— the number of tuples (T) that differ from s in 1
place, ...,

" ) that differ from s in

— the number of tuples
B-n

B - n places,

e R




18. Proof (cont-d)

e When < 0.5and 8-n < g, the number of combina-

n n
tions increases with k, sot < g3 -n- .
k B-n

| n
e Here, (Z) = m. Since n! ~ (g) , we have
t<p ! '
. n . .
=P \E -
€ ]- €
e Here, v o = exp(5), where S def —f-

71 A7
In(6) — (1 — B) - In(1 — B) is Shannon’s entropy.

e It is known that S attains its largest value when 8 =
0.5, in which case S = In(2) and v = exp(S) = 2.

e When 5 < 0.5, we have S < In(2), thus, v < 2, and
t<pB-n-v" for some vy < 2.




19. Proof (cont-d)

e Let us now construct the desired collection of sign tu-
ples s, ... sM),

— We start with some sign tuple s, e.g., st =
(1,...,1).

— Then, we dismiss ¢t < 4" tuples which are < -close
to s, and select one of the remaining tuples as s(?).

— We then dismiss ¢t < 4" tuples which are < S-close

to s,

— Among the remaining tuples, we select the tuple
s ete.
e Once we have selected M tuples, we have thus dis-
missed t - M < 3 -n-~"- M sign tuples.

e So, as long as this number is smaller than the overall
number 2" of sign tuples, we can continue selecting.




20. Proof (conclusion9)

e Our procedure ends when we have selected M tuples
for which g -n-~"- M > 2".
noo 1
e Thus, we have selected M > (2) - —— tuples.
v 5 n
e So, we have indeed selected exponentially many tuples.
1 n
e Hence, p, < i <pB-n- (%) , le.,
pn < B -n-c", where cdéf%< 1.

e So, the probability p, is indeed exponentially decreas-
ing. The main result is proven.
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