Limitations of Realistic Monte-Carlo Techniques in Estimating Interval Uncertainty

Andrzej Pownuk, Olga Kosheleva, and Vladik Kreinovich Computational Science Program University of Texas at El Paso El Paso, TX 79968, USA ampownuk@utep.edu, olgak@utep.edu, vladik@utep.edu

1. Need for Data Processing

- We want to predict the future state of the world, i.e., the future values y of different quantities.
- For this, we need to know how y depends on the current values x_1, \ldots, x_n of the related quantities:

$$y=f(x_1,\ldots,x_n).$$

• Then, we measure x_i and make a prediction

$$\widetilde{y} = f(\widetilde{x}_1, \ldots, \widetilde{x}_n).$$

- Weather prediction shows that the data processing algorithm f can be very complex.
- Data processing is also needed if we are interested in a difficult-to-measure quantity y.
- To estimate y, we measure easier-to-measure quantities x_1, \ldots, x_n related to y by a known dependence

$$y = f(x_1, \ldots, x_n).$$

- 2. Need to Take Uncertainty Into Account When Processing Data
 - Measurement are never absolutely accurate: in general,

$$\Delta x_i \stackrel{\text{def}}{=} \widetilde{x}_i - x_i \neq 0$$

- As a result, the estimate $\tilde{y} = f(\tilde{x}_1, \dots, \tilde{x}_n)$ is, in general, different from the ideal value $y = f(x_1, \dots, x_n)$.
- To estimate the accuracy $\Delta y \stackrel{\text{def}}{=} \widetilde{y} y$, we need to have some information about the measurement errors Δx_i .
- Traditional engineering approach assumes that we know the probability distribution of each Δx_i .
- Often, $\Delta x_i \sim N(0, \sigma_i)$, and different Δx_i are assumed to be independent.
- In such situations, our goal is to find the probability distribution for Δy .

3. Case of Interval Uncertainty

- Often, we only know the upper bound $\Delta_i: |\Delta x_i| \leq \Delta_i$.
- Then, the only information about the x_i is that

$$x_i \in \mathbf{x}_i \stackrel{\text{def}}{=} [\widetilde{x}_i - \Delta_i, \widetilde{x}_i + \Delta_i]$$

- Different $x_i \in \mathbf{x}_i$ lead, in general, to different $y = f(x_1, \dots, x_n).$
- We want to find the range **y** of possible values of y: $\mathbf{y} = \{f(x_1, \dots, x_n) : x_1 \in \mathbf{x}_1, \dots, x_n \in \mathbf{x}_n\}.$
- Often, measurement errors are relatively small.
- We can then only keep terms linear in Δx_i :

$$\Delta y = \sum_{i=1}^{n} c_i \cdot \Delta x_i$$
, where $c_i \stackrel{\text{def}}{=} \frac{\partial f}{\partial x_i}$

• In this case, $\mathbf{y} = [\widetilde{y} - \Delta, \widetilde{y} + \Delta]$, where $\Delta = \sum_{i=1}^{n} |c_i| \cdot \Delta_i$.

- 4. How to Compute the Interval Range: Linearized Case
 - Sometimes, we have explicit expressions or efficient algorithms for the partial derivatives c_i .
 - Often, however, we proprietary software in our computations.
 - Then, we cannot use differentiation formulas or automatic differentiation (AD) tools.
 - We can use numerical differentiation:

$$c_i \approx \frac{f(\widetilde{x}_1, \dots, \widetilde{x}_{i-1}, \widetilde{x}_i + h_i, \widetilde{x}_{i+1}, \dots, \widetilde{x}_n) - \widetilde{y}}{h_i}.$$

- Problem: We need n + 1 calls to f, to compute \tilde{y} and n values c_i .
- When f is time-consuming and n is large, this takes too long.

Ne	leed for Data Processing		
Ne	Need to Take		
Cá	ase of Inte	rval	
Н	ow to Con	pute the	
A	Faster Me	thod:	
М	onte-Carlo		
Pr	roof : Case	e of	
Ge	eneral Case	е	
W	hy Cauchy	/	
	Home Page		
	Title Page		
	4 >>		
	Page 5 of 21		
	Go Back		
	Full Screen		
	Close		
	Quit		

5. A Faster Method: Cauchy-Based Monte-Carlo

- *Idea:* use Cauchy distribution $\rho_{\Delta}(x) = \frac{\Delta}{\pi} \cdot \frac{1}{1 + x^2/\Delta^2}$.
- Why: when $\Delta x_i \sim \rho_{\Delta_i}(x)$ are indep., then $\Delta y = \sum_{i=1}^n c_i \cdot \Delta x_i \sim \rho_{\Delta}(x)$, with $\Delta = \sum_{i=1}^n |c_i| \cdot \Delta_i$.
- Thus, we simulate $\Delta x_i^{(k)} \sim \rho_{\Delta_i}(x)$; then, $\Delta y^{(k)} \stackrel{\text{def}}{=} \widetilde{y} - f(\widetilde{x}_1 - \Delta x_1^{(k)}, \ldots) \sim \rho_{\Delta}(x).$
- Maximum Likelihood method can estimate Δ : $\prod_{k=1}^{N} \rho_{\Delta}(\Delta y^{(k)}) \to \max, \text{ so } \sum_{k=1}^{N} \frac{1}{1 + (\Delta y^{(k)})^2 / \Delta^2} = \frac{N}{2}.$
- To find Δ from this equation, we can use, e.g., the bisection method for $\underline{\Delta} = 0$ and $\overline{\Delta} = \max_{1 \le k \le N} |\Delta y^{(k)}|$.

Ve	Veed for Data Processing		
Ve	Need to Take		
Cá	ase of Inte	rval	
На	ow to Con	pute the	
4	Faster Me	ethod:	
и	onte-Carlo		
D,	roof : Case	e of	
Ge	eneral Cas	е	
N	hy Cauchy	/	
	Home	e Page	
	Title	Page	
	•• ••		
	◀		
	Page 6 of 21		
	Go Back		
	Go	DACK	
	Go Full S	Screen	
	Go Full S Cl	Screen	

6. Monte-Carlo: Successes and Limitations

- Fact: for Monte-Carlo, accuracy is $\varepsilon \sim 1/\sqrt{N}$.
- Good news: the number N of calls to f depends only the desired accuracy ε .
- *Example:* to find Δ with accuracy 20% and certainty 95%, we need N = 200 iterations.
- *Limitation:* this method is *not realistic*; indeed:
 - we know that Δx_i is *inside* $[-\Delta_i, \Delta_i]$, but
 - Cauchy-distributed variable has a high probability to be *outside* this interval.
- *Natural question:* is it a limitation of our method, or of a problem itself?
- *Our answer:* for interval uncertainty, a realistic Monte-Carlo method is not possible.

Need for Data Processing			
Need to Take			
Ca	se of Inte	rval	
Нс	ow to Com	pute the	
A	Faster Me	thod:	
Mo	onte-Carlo	t	
Pr	oof : Case	e of	
Ge	neral Case	e	
W	hy Cauchy	/	
	Ноте	e Page	
	Title	Page	
	•• ••		
Page 7 of 21			
Go Back			
	Full Screen		
	Close		
	Quit		

7. Proof : Case of Independent Variables

• It is sufficient to prove that we cannot get the correct estimate for *one* specific function

 $f(x_1,\ldots,x_n) = x_1 + \ldots + x_n$, when $\Delta y = \Delta x_1 + \ldots + \Delta x_n$.

- When each variables Δx_i is in the interval $[-\delta, \delta]$, then the range of Δy is $[-\Delta, \Delta]$, where $\Delta = n \cdot \delta$.
- In Monte-Carlo, $\Delta y^{(k)} = \Delta x_1^{(k)} + \ldots + \Delta x_n^{(k)}$.
- $\Delta_i^{(k)}$ are i.i.d. Due to the Central Limit Theorem, when $n \to \infty$, the distribution of the sum tends to Gaussian.
- For a normal distribution, with very high confidence, $\Delta y \in [\mu - k \cdot \sigma, \mu + k \cdot \sigma].$
- Here, $\sigma \sim \sqrt{n}$, so this interval has width $w \sim \sqrt{n}$.
- However, the actual range of Δy is $\sim n \gg w$. Q.E.D.

8. General Case

• Let's take $f(x_1, ..., x_n) = s_1 \cdot x_1 + ... + s_n \cdot x_n$, where $s_i \in \{-1, 1\}$.

• Then,
$$\Delta = \sum_{i=1}^{n} |c_i| \cdot \Delta_i = n \cdot \delta.$$

• Let $\varepsilon > 0$, $\delta > 0$, and $p \in (0, 1)$. We consider probability distributions P on the set of all vectors

 $(\Delta x_1 \dots, \Delta x_n) \in [-\delta, \delta] \times \dots \times [-\delta, \delta].$

• We say that P is a (p, ε) -realistic Monte-Carlo estimation (MCE) if for all $s_i \in \{-1, 1\}$, we have

 $\operatorname{Prob}(s_1 \cdot \Delta x_1 + \ldots + s_n \cdot \Delta x_n \ge n \cdot \delta \cdot (1 - \varepsilon)) \ge p.$

- **Result.** If for every n, we have a (p_n, ε) -realistic MCE, then $p_n \leq \beta \cdot n \cdot c^n$ for some $\beta > 0$ and c < 1.
- For probability p_n , we need $1/p_n \sim c^{-n}$ simulations more than n+1 for numerical differentiation.

- 9. Why Cauchy Distribution: Formulation of the Problem
 - We want to find a family of probability distributions with the following property:
 - when independent X_1, \ldots, X_n have distributions from this family with parameters $\Delta_1, \ldots, \Delta_n$,
 - then each $Y = c_1 \cdot X_1 + \ldots + c_n \cdot X_n \sim \Delta \cdot X$, where X corr. to parameter 1, and $\Delta = \sum_{i=1}^n |c_i| \cdot \Delta_i$.
 - In particular, for $\Delta_1 = \ldots = \Delta_n = 1$, the desired property of this probability distribution is as follows:
 - if we have n independent identically distributed random variables X_1, \ldots, X_n ,
 - then each $Y = c_1 \cdot X_1 + \ldots + c_n \cdot X_n$ has the same distribution as $\Delta \cdot X_i$, where $\Delta = \sum_{i=1}^n |c_i|$.

10. Analysis of the Problem

- For n = 1 and $c_1 = -1$, the desired property says that $-X \sim X$, the distribution is even.
- A usual way to describe a probability distribution is to use a probability density function $\rho(x)$.
- Often, it is convenient to use its Fourier transform the characteristic function $\chi_X(\omega) \stackrel{\text{def}}{=} E[\exp(i \cdot \omega \cdot X)].$
- When X_i are independent, then for $S = X_1 + X_2$:

$$\chi_{S}(\omega) = E[\exp(\mathbf{i} \cdot \omega \cdot S)] = E[\exp(\mathbf{i} \cdot \omega \cdot (X_{1} + X_{2})] = E[\exp(\mathbf{i} \cdot \omega \cdot X_{1} + \mathbf{i} \cdot \omega \cdot X_{2})] = E[\exp(\mathbf{i} \cdot \omega \cdot X_{1}) \cdot \exp(\mathbf{i} \cdot \omega \cdot X_{2})].$$

• Since X_1 and X_2 are independent,

 $\chi_S(\omega) = E[\exp(\mathbf{i}\cdot\omega\cdot X_1)] \cdot E[\exp(\mathbf{i}\cdot\omega\cdot X_2)] = \chi_{X_1}(\omega)\cdot\chi_{X_2}(\omega).$

Ne	Need for Data Processing		
Ne	Need to Take		
Cá	ase of Inte	rval	
Ha	ow to Con	pute the	
A	Faster Me	ethod:	
M	onte-Carlc		
Pr	roof : Case	e of	
Ge	eneral Cas	е	
W	hy Cauchy	/	
	Home Page		
	Title	Page	
	•• ••		
	•		
	Page 11 of 21		
	Go Back		
	Full Screen		
	CI	ose	

11. Analysis of the Problem (cont-d)

• Similarly, for
$$Y = \sum_{i=1}^{n} c_i \cdot X_i$$
, we have
 $\chi_Y(\omega) = E[\exp(i \cdot \omega \cdot Y)] = E\left[\exp\left(i \cdot \omega \cdot \sum_{i=1}^{n} c_i \cdot X_i\right)\right] = E\left[\prod_{i=1}^{n} \exp(i \cdot \omega \cdot c_i \cdot X_i)\right] = \prod_{i=1}^{n} \chi_X(\omega \cdot c_i).$

• The desired property is $Y \sim \Delta \cdot X$, so

$$\prod_{i=1}^{n} \chi_X(\omega \cdot c_i) = \chi_{\Delta \cdot X}(\omega) = E[\exp(i \cdot \omega \cdot (\Delta \cdot X))]\chi_X(\omega \cdot \Delta),$$

so $\chi_X(c_1 \cdot \omega) \cdot \ldots \cdot \chi_X(c_n \cdot \omega) = \chi_X((|c_1| + \ldots + |c_n|) \cdot \omega).$

• In particular, for
$$n = 1$$
, $c_1 = -1$, we get $\chi_X(-\omega) = \chi_X(\omega)$, so $\chi_X(\omega)$ should be an even function.

Ne	Need for Data Processing		
Ne	Need to Take		
Cá	ase of Inte	rval	
Ha	ow to Com	pute the	
A	Faster Me	thod:	
M	onte-Carlo	e	
Pr	oof : Case	e of	
Ge	eneral Case	e	
W	hy Cauchy	/	
	Ноте	e Page	
	Title	Page	
	•• ••		
	•		
	Page 12 of 21		
Go Back			
	Full Screen		
	Close		
	Quit		

12. Analysis of the Problem (cont-d)

• Reminder:

$$\chi_X(c_1 \cdot \omega) \cdot \ldots \cdot \chi_X(c_n \cdot \omega) = \chi_X((|c_1| + \ldots + |c_n|) \cdot \omega).$$

• For n = 2, $c_1 > 0$, $c_2 > 0$, and $\omega = 1$, we get $\chi_X(c_1 + c_2) = \chi_X(c_1) \cdot \chi_X(c_2).$

- The characteristic function should be measurable.
- Known: the only measurable functions with this property are $\chi_X(\omega) = \exp(-k \cdot \omega)$ for some k.
- Due to evenness, for a general ω , we get $\chi_X(\omega) = \exp(-k \cdot |\omega|)$.
- By applying the inverse Fourier transform, we conclude that X is Cauchy distributed.
- Conclusion: so, only Cauchy distribution works.

13. Acknowledgments

- This work was supported in part:
 - by the National Science Foundation grants:
 - HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
 - DUE-0926721, and
 - by an award from the Prudential Foundation.
- The authors are thankful to Sergey Shary and to the anonymous referees for their valuable suggestions.

Need for Data Processing		
Need to Take		
Case of Interval		
How to Compute the		
A Faster Method:		
Monte-Carlo:		
Proof : Case of		
General Case		
Why Cauchy		
Home Page		
Title Page		
44		
Page 14 of 21		
Go Back		
Full Screen		
Close		
Quit		

14. Proof of the Main Result

- Let us pick some $\alpha \in (0, 1)$.
- Let us denote, by m, the number of indices i or which $s_i \cdot \Delta x_i > \alpha \cdot \delta$.
- If we have $s_1 \cdot \Delta x_1 + \ldots + s_n \cdot \Delta x_n \ge n \cdot \delta \cdot (1 \varepsilon)$, then:
 - for n m indices, we have $s_i \cdot \Delta x_i \leq \alpha \cdot \delta$ and - for the other m indices, we have $s_i \cdot \Delta x_i \leq \delta$.

• Thus,
$$n \cdot \delta \cdot (1 - \varepsilon) \le \sum_{i=1}^{n} s_i \cdot \Delta x_i \le m \cdot \delta + (n - m) \cdot \alpha \cdot \delta$$
.

• Dividing this inequality by δ , we get

$$n \cdot (1 - \varepsilon) \le m + (n - m) \cdot \alpha$$

• So,
$$n \cdot (1 - \alpha - \varepsilon) \le m \cdot (1 - \alpha)$$
 and $m \ge n \cdot \frac{1 - \alpha - \varepsilon}{1 - \alpha}$.

• So, we have at least $n \cdot \frac{1 - \alpha - \varepsilon}{1 - \alpha}$ indices for which Δx_i has the same sign as s_i (and for which $|\Delta x_i| > \alpha \cdot \delta$).

- So, for Δx_i corr. to (s_1, \ldots, s_n) , at most $n \cdot \frac{\varepsilon}{1 \alpha \varepsilon}$ indices have a different sign than s_i .
- It is possible that the same tuple Δx can serve two tuples $s \neq s'$. In this case:
 - going from s_i to sign (Δx_i) changes at most $n \cdot \frac{\varepsilon}{1 - \alpha - \varepsilon}$ signs, and - going from sign (Δx_i) to s'_i also changes at most $n \cdot \frac{\varepsilon}{1 - \alpha - \varepsilon}$ signs.
- Thus, between the tuples s and s', at most $2 \cdot \frac{\varepsilon}{1 \alpha \varepsilon}$ signs are different.
- In other words, for the Hamming distance $d(s, s') \stackrel{\text{def}}{=} \#\{i: s_i \neq s'_i\}$, we have $d(s, s') \leq 2 \cdot n \cdot \frac{\varepsilon}{1 \alpha \varepsilon}$.

Ne	Veed for Data Processing		
Ne	Need to Take		
Cá	ase of Inter	val	
Ha	ow to Com	pute the	
A	Faster Me	thod:	
М	onte-Carlo.	·	
Pr	oof : Case	of	
Ge	eneral Case		
W	hy Cauchy		
	Home Page		
	Title	Page	
	∢ →		
	•		
	Page 16 of 21		
	Go Back		
	Full Screen		
	Close		
	Qı	uit	

- Thus, if $d(s,s') > 2 \cdot n \cdot \frac{\varepsilon}{1-\alpha-\varepsilon}$, then no tuples $(\Delta x_1, \ldots, \Delta x_n)$ can serve both sign tuples s and s'.
- In this case, the two sets of tuples Δx do not intersect:
 - tuples s.t. $s_1 \cdot \Delta x_1 + \ldots + s_n \cdot \Delta x_n \ge n \cdot \delta \cdot (1 \varepsilon);$ - tuples s.t. $s'_1 \cdot \Delta x_1 + \ldots + s'_n \cdot \Delta x_n \ge n \cdot \delta \cdot (1 - \varepsilon).$
- Let's take take M sign tuples $s^{(1)}, \ldots, s^{(M)}$ for which $d(s^{(i)}, s^{(j)}) > 2 \cdot \frac{\varepsilon}{1 \alpha \varepsilon}$ for all $i \neq j$.
- Then the probability P that Δx serves one of these sign tuples is $\geq M \cdot p$.
- Since $P \le 1$, we have $p \le \frac{1}{M}$; so:
 - to prove that p_n is exponentially decreasing,
 - it is sufficient to find the sign tuples whose number M is exponentially increasing.

Ne	Need for Data Processing			
Ne	Need to Take			
Cá	ase of Inte	rval		
Н	ow to Com	pute the		
A	Faster Me	thod:		
М	onte-Carlo	:		
Pr	oof : Case	e of		
Ge	eneral Case	9		
W	hy Cauchy	·		
	Home Page			
	Title Page			
	44 >>			
	Page 17 of 21			
Ca Paak				
	Go Back			
	Full Screen			
	Close			
	Quit			

• Let us denote
$$\beta \stackrel{\text{def}}{=} \frac{\varepsilon}{1 - \alpha - \varepsilon}$$
.

- Then, for each sign tuple s, the number t of all sign tuples s' for which $d(s, s') \leq \beta \cdot n$ is equal to the sum of:
 - the number of tuples $\binom{n}{0}$ that differ from s in 0 places,
 - the number of tuples $\binom{n}{1}$ that differ from s in 1 place, ...,
 - the number of tuples $\binom{n}{\beta \cdot n}$ that differ from s in $\beta \cdot n$ places,

• Thus,
$$t = \binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n \cdot \beta}.$$

• When
$$\beta < 0.5$$
 and $\beta \cdot n < \frac{n}{2}$, the number of combinations $\binom{n}{k}$ increases with k , so $t \le \beta \cdot n \cdot \binom{n}{\beta \cdot n}$.
• Here, $\binom{a}{b} = \frac{a!}{b! \cdot (a-b)!}$. Since $n! \sim \left(\frac{n}{e}\right)^n$, we have $t \le \beta \cdot n \cdot \left(\frac{1}{\beta^{\beta} \cdot (1-\beta)^{1-\beta}}\right)^n$.

- Here, $\gamma \stackrel{\text{def}}{=} \frac{1}{\beta^{\beta} \cdot (1-\beta)^{1-\beta}} = \exp(S)$, where $S \stackrel{\text{def}}{=} -\beta \cdot \ln(\beta) (1-\beta) \cdot \ln(1-\beta)$ is Shannon's entropy.
- It is known that S attains its largest value when $\beta = 0.5$, in which case $S = \ln(2)$ and $\gamma = \exp(S) = 2$.
- When $\beta < 0.5$, we have $S < \ln(2)$, thus, $\gamma < 2$, and $t \leq \beta \cdot n \cdot \gamma^n$ for some $\gamma < 2$.

Ne	leed for Data Processing		
Ne	Need to Take		
Cá	ise of Inte	rval	
Ho	ow to Com	pute the	
A	Faster Me	thod:	
M	onte-Carlo	:	
Pr	oof : Case	e of	
Ge	eneral Case	e	
w	hy Cauchy	·	
	Home Page		
	Title Page		
	Title	Page	
	Title ∢ ∢	Page	
	Title	Page	
	Title	Page	
	Title	Page Page Page Page Page Page Page P	
	Title	Page Page Page Page Page Page Page P	
	Title	Page Page Page Page Page Page Page P	

- Let us now construct the desired collection of sign tuples $s^{(1)}, \ldots, s^{(M)}$.
 - We start with some sign tuple $s^{(1)}$, e.g., $s^{(1)} = (1, \ldots, 1)$.
 - Then, we dismiss $t \leq \gamma^n$ tuples which are $\leq \beta$ -close to s, and select one of the remaining tuples as $s^{(2)}$.
 - We then dismiss $t \leq \gamma^n$ tuples which are $\leq \beta$ -close to $s^{(2)}$.
 - Among the remaining tuples, we select the tuple $s^{(3)}$, etc.
- Once we have selected M tuples, we have thus dismissed $t \cdot M \leq \beta \cdot n \cdot \gamma^n \cdot M$ sign tuples.
- So, as long as this number is smaller than the overall number 2^n of sign tuples, we can continue selecting.

Ne	Need for Data Processing		
Ne	Need to Take		
Ca	ase of Inte	rval	
Н	ow to Com	pute the	
A	Faster Me	thod:	
М	onte-Carlo	:	
Pr	oof : Case	e of	
Ge	eneral Case	9	
W	hy Cauchy	·	
	Ноте	e Page	
	Title	Page	
	44		
	Page 20 of 21		
	Go Back		
	Full Screen		
	Close		
	Quit		
	Q	uit	

20. Proof (conclusion9)

- Our procedure ends when we have selected M tuples for which $\beta \cdot n \cdot \gamma^n \cdot M \ge 2^n$.
- Thus, we have selected $M \ge \left(\frac{2}{\gamma}\right)^n \cdot \frac{1}{\beta \cdot n}$ tuples.
- So, we have indeed selected exponentially many tuples.

• Hence,
$$p_n \leq \frac{1}{M} \leq \beta \cdot n \cdot \left(\frac{\gamma}{2}\right)^n$$
, i.e.,
 $p_n \leq \beta \cdot n \cdot c^n$, where $c \stackrel{\text{def}}{=} \frac{\gamma}{2} < 1$.

• So, the probability p_n is indeed exponentially decreasing. The main result is proven.

