Voting Aggregation Leads to (Interval) Median

Olga Kosheleva¹, and Vladik Kreinovich²

¹Department of Teacher Education ²Department of Computer Science University of Texas at El Paso El Paso, TX 79968, USA olgak@utep.edu, vladik@utep.edu

1. Formulation of the Problem

- For many real-real problems, there are several different decision making tools.
- Each of these tools has its advantages: otherwise, it would not be used.
- To combine the advantages of different tools, it therefore desirable to aggregate their results.
- One of the most widely used methods of aggregating several results is voting:
 - if the majority of results satisfy a certain property,
 - then we conclude that the actual value has this property.
- *Example:* if most classifiers classify the disease as pneumonia, we conclude that it is pneumonia.

2. What We Do and Why This Is Non-Trivial

- What we do: we analyze how voting can be used to aggregate several numerical estimates.
- *Observation:* voting is closely related to the AI notion of a "typical" object of a class.
- *Example:* what is an intuitive meaning of a term "typical professor"?
 - if most professors are absent-minded,
 - then we expect a "typical" professor to be absentminded as well.
- *Problem:* no one is perfectly typical, e.g., due to their specific research area.
- This is why in AI, there is an ongoing discussion on how best to describe typical (not abnormal) objects.

3. Main Definition

- We have: n estimates $x_i = (x_{i1}, \ldots, x_{iq})$ $(1 \le i \le n)$ for the values of q quantities.
- We want: to combine these estimates into a single estimate x, so that:
 - if the majority of x_i satisfies a property P,
 - then x should satisfy also this property.
- Let $q \ge 1$, let S be a class of subsets of \mathbb{R}^q .
- We say that $x \in \mathbb{R}^q$ is a possible S-aggregate of $x_1, \ldots, x_n \in \mathbb{R}^q$ if for every $S \in S$:
 - if the majority of x_i are in this set,
 - then x should be in this set.
- The set of all possible S-aggregates is called the S-aggregate of the elements x_1, \ldots, x_n .

Formulation of the
What If We Allow All
1-D Interval-Based
Discussion
What If We Require
An Alternative
Alternative
1-D Case: Can We
Multi-D Interval
Home Page
Title Page
Page 4 of 23
Go Back
Eull Sereen
Full Screen
Close
Quit

4. What If We Allow All Properties?

- Let $U \stackrel{\text{def}}{=} 2^{\mathbb{R}^q}$ be the set of *all* subsets of \mathbb{R}^q .
- For every $q \ge 1$ and $n \ge 3$, if all n elements x_1, \ldots, x_n are all different, then their U-aggregate is empty.
- Proof:
 - All x_i belong to $X = \{x_1, \ldots, x_n\}$, so $x \in X$ hence $x = x_i$ for some i.
 - But most elements x_j are different from x_i , i.e., $x_j \in -\{x_i\}$, thus, $x \neq x_i$.
 - Contradiction shows that no such x is possible, i.e., that the U-aggregare is empty.
- Thus, the aggregation problem is indeed non-trivial.

- 5. When Is the *U*-Aggregate Non-Empty?
 - Let $q \ge 1$.
 - When n = 1 then the U-aggregate set of x_1 is $\{x_1\}$.
 - When n = 2, then the U-aggregate set is $\{x_1, x_2\}$.
 - For all odd $n \geq 3$:
 - if the majority of x_1, \ldots, x_n are equal to each other, then the U-aggregate set is this common element.
 - For all even $n \ge 4$:
 - if the majority of x_1, \ldots, x_n are equal to each other, then the U-aggregate set is this common element;
 - if half of x_i are equal to a, and all others as equal to $b \neq a$, then the U-aggregate is $\{a, b\}$.
 - In all other cases, the U-aggregate set is empty.

Formulation of the
What If We Allow All
1-D Interval-Based
Discussion
What If We Require
An Alternative
Alternative
1-D Case: Can We
Multi-D Interval
Home Page
Title Page
•• ••
Page 6 of 23
Go Back
Full Screen
Close
0.1

- 6. 1-D Interval-Based Voting Aggregation Leads to (Interval) Median
 - Let I denote the set of all intervals [a, b].
 - For every sequence x_1, \ldots, x_n , let $x_{(1)} \leq \ldots \leq x_{(n)}$ denote the result of sorting the numbers x_i in increasing order.
 - When n = 2k+1 for some integer k, then by a median, we mean the value $x_{(k+1)}$.
 - When n is even, i.e., when n = 2k for some integer k, then by a *median*, we mean the interval $[x_{(k)}, x_{(k+1)}]$.
 - The median will also be called an *interval median*.
 - **Resyult:** For every sequence of numbers x_1, \ldots, x_n , the *I*-aggregate set is equal to the median.

Formulation of the			
What If We Allow All			
1-D Interval-Based			
Di	iscussion		
W	'hat If We	Require	
Ar	n Alternati	ive	
Al	ternative .		
1-	D Case: C	Can We	
M	ulti-D Inte	erval	
	Ноте	e Page	
	Title	Page	
	44	••	
	◀		
Page 7 of 23			
Go Back			
Full Screen			
	Close		
	Quit		
	Quit		

7. Discussion

- Median is the most *robust* aggregation, i.e., the least vulnerable to possible outliers.
- Thus, median is often used in data processing.
- Median is used in econometrics, as a more proper measure of "average" ("typical") income than the mean.
- Otherwise, a single billionaire living in a small town:
 - increases its mean income
 - without affecting the living standards of its inhabitants.

Formulation of the
What If We Allow All
1-D Interval-Based
Discussion
What If We Require
An Alternative
Alternative
1-D Case: Can We
Multi-D Interval
Home Page
Title Page
Page 8 of 23
Go Back
Full Screen
Close
Quit

8. What If We Require Strong Majority?

- What if we only require $x_i \in S$ when the proportion of values $x_i \in S$ exceeds a certain threshold t > 0.5?
- The set of all possible t-S-aggregates is called the *t*-S-aggregate set.
- For every x_1, \ldots, x_n , and for every t, the t-I-aggregate set is the interval $[x_{(n-k+1)}, x_{(k)}]$, where $k = \lceil t \cdot n \rceil$.

Formulation of the	
What If We Allow All	
1-D Interval-Based	
Discussion	
What If We Require	
An Alternative	
Alternative	
1-D Case: Can We	
Multi-D Interval	
Home Page	
Title Page	
•• ••	
Page 9 of 23	
Go Back	
Full Screen	
Close	

- 9. An Alternative Derivation of the Interval Median
 - Interval median can be also derived from other natural conditions:
 - That it is a continuous function of x_1, \ldots, x_n .
 - That it is invariant with respect to arbitrary strictly increasing or strictly decreasing re-scalings:
 - such re-scalings which make physical sense;
 - e.g., we can measure sound energy in Watts or in decibels – which are logarithmic units.
 - That this is the narrowest such operation:
 - else we could, e.g., take an operation returning the whole range $\left[\min_{i} x_{i}, \max_{i} x_{i}\right]$.

10. Formalizing Scale-Invariance

• We say that a mapping $A(x_1, \ldots, x_n) = [\underline{a}(x_1, \ldots, x_n), \overline{a}(x_1, \ldots, x_n)]$ is scale-invariant if:

- for each strictly increasing f(x):

$$\underline{a}(f(x_1),\ldots,f(x_n)) = f(\underline{a}(x_1,\ldots,x_n)) \text{ and}$$
$$\overline{a}(f(x_1),\ldots,f(x_n)) = f(\overline{a}(x_1,\ldots,x_n));$$

- for each strictly decreasing continuous f(x):

$$\underline{a}(f(x_1),\ldots,f(x_n)) = f(\overline{a}(x_1,\ldots,x_n)) \text{ and}$$
$$\overline{a}(f(x_1),\ldots,f(x_n)) = f(\underline{a}(x_1,\ldots,x_n));$$

11. Alternative Derivation: Result

- Let $n \ge 1$ be fixed.
- By an *aggregation operation*, we mean a mapping that maps each tuple x_1, \ldots, x_n into an interval

 $A(x_1,\ldots,x_n) = [\underline{a}(x_1,\ldots,x_n), \overline{a}(x_1,\ldots,x_n)]$ so that:

- 1. this operation is *continuous*, i.e., both functions $\underline{a}(x_1, \ldots, x_n)$ and $\overline{a}(x_1, \ldots, x_n)$ are continuous;
- 2. this operation is *scale-invariant*;
- 3. A is the narrowest: for every operations $B(x_1, \ldots, x_n)$ satisfying Properties 1 and 2, * if $B(x_1, \ldots, x_n) \subseteq A(x_1, \ldots, x_n)$ for all tuples, * then $B(x_1, \ldots, x_n) = A(x_1, \ldots, x_n)$ for all tuples.
- **Result:** Interval median is the only aggregation operation in this sense.

12. 1-D Case: Can We Expand Beyond Intervals?

- In our analysis, instead of closed intervals, we can consider general *convex subsets* of the real line.
- This includes closed, open, semi-open intervals, and intervals with infinite endpoints.
- Can we go beyond intervals?
- It turns out that we cannot:
- Result: $(n = 3 \text{ or } n \ge 5)$:
 - Let a class S contain, in addition to all the intervals, a non-convex set S_0 .
 - Then, there exists values x_1, \ldots, x_n for which the S-aggregate set is empty.

13. Multi-D Interval-Based Voting Aggregation

 \bullet Let B denote the set of all the boxes

 $[a_1,b_1]\times\ldots\times[a_q,b_q].$

- **Result:** For every sequence of tuples x_1, \ldots, x_n , the *B*-aggregate set is the box $M_1 \times \ldots \times M_q$, where
 - M_i is the interval median of the *i*-th components x_{1i}, \ldots, x_{ni} .
- For the class P of all convex polytopes, P-aggregate can be empty: $x_1 = (0, 0, 0, \dots, 0),$

 $x_2 = (0.1, 0.9, 0, \dots, 0), \quad x_3 = (1, 1, 0, \dots, 0).$

- Here, *B*-aggregate is the median $(0.1, 0.9, 0, \dots, 0)$.
- However, the majority of x_i (namely, x_1 and x_3) belong to the segment $S = \{(x, x, 0, \dots, 0) : 0 \le x \le 1\}$.
- Alas, the median does not belong to this segment.

Formulation of the
What If We Allow All
1-D Interval-Based
Discussion
What If We Require
An Alternative
Alternative
1-D Case: Can We
Multi-D Interval
Home Page
Title Page
Page 14 of 23
Go Back
Full Screen
Close

14. Acknowledgments

This work was supported in part:

- by the National Science Foundation grants:
 - HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
 - DUE-0926721, and
- by an award from Prudential Foundation.

15. Proof of the Main 1-D Result

- Let us first prove that every possible U-aggregate x should belong to the median set.
- If n = 2k + 1, then the majority of $x_{(i)}$ belong to $[x_{(1)}, x_{(k+1)}]$: namely, $x_{(1)} \leq \ldots \leq x_{(k+1)}$.
- Thus, every possible U-aggregate x must belong to the same interval, and thus, we must have $x \leq x_{(k+1)}$.
- Similarly, the majority of elements $x_{(i)}$ belong to $[x_{(k+1)}, x_{(n)}]$: namely, $x_{(k+1)} \leq \ldots \leq x_{(n)}$.
- Thus, every possible U aggregate x must belong to the same interval, and so, we must have $x \ge x_{(k+1)}$.
- From $x \leq x_{(k+1)}$ and $x \geq x_{(k+1)}$, we conclude that $x = x_{(k+1)}$, i.e., x coincides with the median.
- If n = 2k, then the majority of $x_{(i)}$ belong to $[x_{(1)}, x_{(k+1)}]$: namely, $x_{(1)} \leq \ldots \leq x_{(k+1)}$.

Formulation of the		
What If We Allow All		
1-D Interval-Based		
Di	iscussion	
W	hat If We	Require
Aı	n Alternati	ve
Al	ternative	
1-	D Case: C	an We
М	ulti-D Inte	rval
	Home	Page
	Title	Page
	44	••
	•	
	Page 1	6 of 23
	Go I	Back
	Full S	creen
	Cla	ose
	-	

16. Proof of the Main 1-D Result (cont-d)

- Thus, every possible U aggregate x must belong to the same interval, and so, we must have $x \leq x_{(k+1)}$.
- Similarly, the majority of $x_{(i)}$ belong to the interval $[x_{(k)}, x_{(n)}]$: namely, $x_{(k)} \leq \ldots \leq x_{(n)}$.
- Thus, every possible U aggregate x must belong to the same interval, and thus, we must have $x \ge x_{(k)}$.
- So, we conclude that $x_{(k)} \leq x \leq x_{(k+1)}$, i.e., that x is indeed an element of the median interval $[x_{(k)}, x_{(k+1)}]$.
- To complete the proof, let us prove that every element of the interval median is indeed a possible *I*-aggregate.
- For this, we need to show that:

- if an interval [a, b] contains the majority of $x_{(i)}$, - then [a, b] contains the interval median.

Formulation of the		
What If We Allow All		
1-	D Interval-	Based
Di	scussion	
W	hat If We	Require
Ar	n Alternativ	/e
Al	ternative	
1-	D Case: Ca	an We
М	ulti-D Inter	rval
	Home	Page
	Title	Page
	44	••
	•	
Page 17 of 23		
Go Back		
Full Screen		
	Clo	ose
	Qı	uit

17. Proof of the Main 1-D Result (cont-d)

• We need to prove that:

- if an interval [a, b] contains the majority of $x_{(i)}$,

- then [a, b] contains the interval median.
- Let us prove it by considering two possible situations: when n is odd and when n is even.
- Let us show that in the odd case n = 2k + 1, if the interval [a, b] contains the majority of the elements $x_{(i)}$, then $x_{(k+1)} \in [a, b]$, i.e., $a \leq x_{(k+1)}$ and $x_{(k+1)} \leq b$.
- We will prove both inequalities by contradiction.
- If $a > x_{(k+1)}$, then the interval [a, b] cannot contain any of the k + 1 elements $x_{(1)} \leq \ldots \leq x_{(k+1)}$.
- Thus, [a, b] contains $\leq k$ remaining elements $x_{(k+2)}, \ldots, x_{(n)}$ which do not form a majority.

Formulation of the			
What If We Allow All			
1-	1-D Interval-Based		
Di	scussion		
W	hat If We	Require	
Ar	a Alternativ	/e	
Al	ternative		
1-	D Case: Ca	an We	
М	ulti-D Inter	rval	
	Home	Page	
	Title	Page	
	••	••	
	•		
	Page 18 of 23		
Go Back			
	Full Screen		
	Clo	ose	
	Qı	ıit	

18. Proof of the Main 1-D Result (cont-d)

- Similarly, if $b < x_{(k+1)}$, then the interval [a, b] cannot contain any of the k+1 elements $x_{(k+1)} \leq \ldots \leq x_{(n)}$.
- Thus, this interval contains $\leq k$ remaining elements $x_{(1)}, \ldots, x_{(k)}$, which also do not form a majority.
- So, if the interval [a, b] contains the majority of elements $x_{(i)}$, then it must contain the median $x_{(k+1)}$.
- So, the median is a possible *I*-aggregate of the values x_1, \ldots, x_n .
- Let us show that in the even case, when n = 2k:
 - if the interval [a, b] contains the majority of the elements $x_{(i)}$,

- then $[x_{(k)}, x_{(k+1)}] \subseteq [a, b]$, so $a \le x_{(k)} \& x_{(k+1)} \le b$.

• We will prove both inequalities by contradiction.

Formulation of the			
What If We Allow All			
1-	1-D Interval-Based		
Di	scussion		
W	hat If We	Require	
Ar	n Alternati	ive	
Al	ternative .		
1-	D Case: C	an We	
М	ulti-D Inte	erval	
	Ноте	e Page	
	Title	Page	
	••	>>	
	44	••	
	Image 1	9 of 23	
	<↓ Page 1 Go	9 of 23	
	↓ ↓ Page 1 Go Full 5	▶ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦	
	Image: Page 1 Go Full 5 CI	9 of 23 Back	

19. Proof of the Main 1-D Result (final part)

- If $a > x_{(k)}$, then the interval [a, b] cannot contain any of the k elements $x_{(1)} \leq \ldots \leq x_{(k)}$.
- So, it must contain no more than k remaining elements $x_{(k+1)}, \ldots, x_{(n)}$ which do not form a majority.
- Similarly, if $b < x_{(k+1)}$, then the interval [a, b] cannot contain any of the k elements $x_{(k+1)} \leq \ldots \leq x_{(n)}$.
- So, it must contain no more than k remaining elements $x_{(1)}, \ldots, x_{(k)}$, which also do not form a majority; thus:
 - if the interval [a, b] contains the majority of elements $x_{(i)}$,
 - then it must contain the median $[x_{(k)}, x_{(k+1)}]$.
- So, every element from the interval median is a possible I-aggregate of the values x_1, \ldots, x_n . Q.E.D.

Fo	rmulation	of the	
What If We Allow All			
1-	1-D Interval-Based		
Di	scussion		
W	hat If We	Require	
Ar	n Alternati	ve	
Al	ternative		
1-	D Case: C	an We	
М	ulti-D Inte	rval	
	Ноте	Page	
	Title	Page	
	44	bb	
	•		
	Page 2	0 of 23	
	Go I	Back	
	Full S	Gcreen	
	Clo	ose	
	Qu	uit	

20. Proof of the Multi-D Result

- Let us first prove that every possible *B*-aggregate tuple belongs to the median box $M_1 \times \ldots \times M_q$.
- Let us fix one of the dimensions i and consider x_{1i}, \ldots, x_{ni} .
- For all $j \neq i$, consider the smallest intervals $[A_j, B_j] \stackrel{\text{def}}{=} \begin{bmatrix} \min_k(x_{kj}), \max_k(x_{kj}) \end{bmatrix}$ containing all x_{kj} .
- For each possible *B*-aggregate tuple $x = (e_1, \ldots, e_q)$, the desired property holds for all the boxes of the type

 $B = [A_1, B_1] \times \ldots \times [A_{i-1}, B_{i-1}] \times [a_i, b_i] \times [A_{i+1}, B_{i+1}] \times \ldots \times [A_{i-1}, B_{i-1}] \times \ldots \times [A_{i-1}, B_{i$

• Since all other intervals forming this box are the largest possible, $x_j \in B \Leftrightarrow x_{j1} \in [a_i, b_i]$.

21. Proof of the Multi-D Result (cont-d)

- Thus, for these boxes:
 - the definition of a possible *B*-aggregate of the tuples x_1, \ldots, x_n implies that
 - the *i*-th component e_i of the tuple x is a possible *I*-aggregate of the components x_{1i}, \ldots, x_{ni} .
- We already know that this implies that e_i belongs to the interval median M_1 of these components.
- Vice versa, let us prove that every tuple $x \in M_1 \times \ldots \times M_q$ is a possible *B*-aggregate.
- Indeed, let $x = (e_1, \ldots, e_q) \in M_1 \times \ldots \times M_q$, and let us assume that the majority of x_i belong to the box

$$B = [a_1, b_1] \times \ldots \times [a_q, b_q]$$

• This implies, for every component *i*, that the majority of the values x_{1i}, \ldots, x_{ni} belong to the interval $[a_i, b_i]$.

Formulation of the
What If We Allow All
1-D Interval-Based
Discussion
What If We Require
An Alternative
Alternative
1-D Case: Can We
Multi-D Interval
Home Page
Title Page
• •
Page 22 of 23
Go Back
Full Screen
Close
Quit

22. Proof of the Multi-D Result (final part)

- For every component i, the majority of the values x_{1i}, \ldots, x_{ni} belong to the interval $[a_i, b_i]$.
- We already know, from the 1-D case, that this implies that $e_i \in [a_i, b_i]$ for every *i*.
- Thus, we indeed have

 $x = (e_1, \ldots, e_q) \in [a_1, b_1] \times \ldots \times [a_q, b_q] = B.$

• The proposition is proven.

Fo	rmulation of the
W	hat If We Allow All
1-l	D Interval-Based
Di	scussion
W	hat If We Require
An	Alternative
Alt	ternative
1-l	D Case: Can We
Multi-D Interval	
	Home Page
	Title Page
	••
	Page 23 of 23
	Go Back
	Full Screen
	Close
	Close
	Quit