Voting Aggregation Leads to (Interval) Median

Olga Kosheleva ${ }^{1}$, and Vladik Kreinovich ${ }^{2}$
${ }^{1}$ Department of Teacher Education
${ }^{2}$ Department of Computer Science
University of Texas at El Paso
El Paso, TX 79968, USA
olgak@utep.edu, vladik@utep.edu

Discussion

What If We Require

An Alternative

Alternative .

1-D Case: Can We.
Multi-D Interval-
Home Page

Page 1 of 23

Go Back

Full Screen

- For many real-real problems, there are several different decision making tools.
- Each of these tools has its advantages: otherwise, it would not be used.
- To combine the advantages of different tools, it therefore desirable to aggregate their results.

Discussion

What If We Require
An Alternative .

Alternative .

1-D Case: Can We.
Multi-D Interval-
Home Page

- One of the most widely used methods of aggregating several results is voting:
- if the majority of results satisfy a certain property,
- then we conclude that the actual value has this property.
- Example: if most classifiers classify the disease as pneumonia, we conclude that it is pneumonia.
- What we do: we analyze how voting can be used to aggregate several numerical estimates.
- Observation: voting is closely related to the AI notion of a "typical" object of a class.
- Example: what is an intuitive meaning of a term "typical professor"?

Multi-D Interval-
Home Page

- if most professors are absent-minded,
- then we expect a "typical" professor to be absentminded as well.
- Problem: no one is perfectly typical, e.g., due to their specific research area.
- This is why in AI, there is an ongoing discussion on

Go Back

Full Screen how best to describe typical (not abnormal) objects.

- We have: n estimates $x_{i}=\left(x_{i 1}, \ldots, x_{i q}\right)(1 \leq i \leq n)$ for the values of q quantities.
- We want: to combine these estimates into a single estimate x, so that:
- if the majority of x_{i} satisfies a property P,
- then x should satisfy also this property.
- Let $q \geq 1$, let \mathcal{S} be a class of subsets of \mathbb{R}^{q}.
- We say that $x \in \mathbb{R}^{q}$ is a possible \mathcal{S}-aggregate of $x_{1}, \ldots, x_{n} \in \mathbb{R}^{q}$ if for every $S \in \mathcal{S}$:
- if the majority of x_{i} are in this set,
- then x should be in this set.

Title Page

- The set of all possible \mathcal{S}-aggregates is called the \mathcal{S} aggregate of the elements x_{1}, \ldots, x_{n}.
- Let $U \stackrel{\text { def }}{=} 2^{\mathbb{R}^{q}}$ be the set of all subsets of \mathbb{R}^{q}.
- For every $q \geq 1$ and $n \geq 3$, if all n elements x_{1}, \ldots, x_{n} are all different, then their U-aggregate is empty.
- Proof:
- All x_{i} belong to $X=\left\{x_{1}, \ldots, x_{n}\right\}$, so $x \in X$ hence $x=x_{i}$ for some i.
- But most elements x_{j} are different from x_{i}, i.e., $x_{j} \in-\left\{x_{i}\right\}$, thus, $x \neq x_{i}$.
- Contradiction shows that no such x is possible, i.e., that the U-aggregare is empty.

Page 5 of 23

Go Back

Full Screen

- Let $q \geq 1$.
- When $n=1$ then the U-aggregate set of x_{1} is $\left\{x_{1}\right\}$.
- When $n=2$, then the U-aggregate set is $\left\{x_{1}, x_{2}\right\}$.
- For all odd $n \geq 3$:
- if the majority of x_{1}, \ldots, x_{n} are equal to each other, then the U-aggregate set is this common element.
- For all even $n \geq 4$:
- if the majority of x_{1}, \ldots, x_{n} are equal to each other, then the U-aggregate set is this common element;
- if half of x_{i} are equal to a, and all others ae equal to $b \neq a$, then the U-aggregate is $\{a, b\}$.
- In all other cases, the U-aggregate set is empty.

Discussion

What If We Require .

An Alternative

Alternative .

```
1-D Case: Can We.
```

Multi-D Interval-
Home Page

Title Page
6. 1-D Interval-Based Voting Aggregation Leads to (Interval) Median

- Let I denote the set of all intervals $[a, b]$.
- For every sequence x_{1}, \ldots, x_{n}, let $x_{(1)} \leq \ldots \leq x_{(n)}$ denote the result of sorting the numbers x_{i} in increasing order.
- When $n=2 k+1$ for some integer k, then by a median, we mean the value $x_{(k+1)}$.
- When n is even, i.e., when $n=2 k$ for some integer k, then by a median, we mean the interval $\left[x_{(k)}, x_{(k+1)}\right]$.
- The median will also be called an interval median.
- Resyult: For every sequence of numbers x_{1}, \ldots, x_{n}, the I-aggregate set is equal to the median.

7. Discussion

- Median is the most robust aggregation, i.e., the least vulnerable to possible outliers.
- Thus, median is often used in data processing.
- Median is used in econometrics, as a more proper measure of "average" ("typical") income than the mean.
- Otherwise, a single billionaire living in a small town:
- increases its mean income
- without affecting the living standards of its inhabitants.

8. What If We Require Strong Majority?

- What if we only require $x_{i} \in S$ when the proportion of values $x_{i} \in S$ exceeds a certain threshold $t>0.5$?
- The set of all possible $\mathrm{t}-\mathcal{S}$-aggregates is called the $t-\mathcal{S}$ aggregate set.
- For every x_{1}, \ldots, x_{n}, and for every t, the $t-I$-aggregate set is the interval $\left[x_{(n-k+1)}, x_{(k)}\right]$, where $k=\lceil t \cdot n\rceil$.

Discussion

What If We Require

An Alternative

Alternative .

```
1-D Case: Can We..
```

Multi-D Interval-

```
    Home Page
```

Title Page
9. An Alternative Derivation of the Interval Median

- Interval median can be also derived from other natural conditions:
- That it is a continuous function of x_{1}, \ldots, x_{n}.
- That it is invariant with respect to arbitrary strictly increasing or strictly decreasing re-scalings:

Home Page

- such re-scalings which make physical sense;

Title Page

- e.g., we can measure sound energy in Watts or in decibels - which are logarithmic units.
- That this is the narrowest such operation:
- else we could, e.g., take an operation returning the whole range $\left[\min _{i} x_{i}, \max _{i} x_{i}\right]$.

Go Back

Full Screen

- We say that a mapping $A\left(x_{1}, \ldots, x_{n}\right)=$ $\left[\underline{a}\left(x_{1}, \ldots, x_{n}\right), \bar{a}\left(x_{1}, \ldots, x_{n}\right)\right]$ is scale-invariant if:
- for each strictly increasing $f(x)$:

$$
\begin{gathered}
\underline{a}\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)=f\left(\underline{a}\left(x_{1}, \ldots, x_{n}\right)\right) \text { and } \\
\bar{a}\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)=f\left(\bar{a}\left(x_{1}, \ldots, x_{n}\right)\right)
\end{gathered}
$$

Alternative .

```
1-D Case: Can We.
```

Multi-D Interval-

```
    Home Page
```

- for each strictly decreasing continuous $f(x)$:

$$
\begin{gathered}
\underline{a}\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)=f\left(\bar{a}\left(x_{1}, \ldots, x_{n}\right)\right) \text { and } \\
\bar{a}\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)=f\left(\underline{a}\left(x_{1}, \ldots, x_{n}\right)\right)
\end{gathered}
$$

Title Page

11. Alternative Derivation: Result

- Let $n \geq 1$ be fixed.
- By an aggregation operation, we mean a mapping that maps each tuple x_{1}, \ldots, x_{n} into an interval
$A\left(x_{1}, \ldots, x_{n}\right)=\left[\underline{a}\left(x_{1}, \ldots, x_{n}\right), \bar{a}\left(x_{1}, \ldots, x_{n}\right)\right]$ so that:

1. this operation is continuous, i.e., both functions $\underline{a}\left(x_{1}, \ldots, x_{n}\right)$ and $\bar{a}\left(x_{1}, \ldots, x_{n}\right)$ are continuous;
2. this operation is scale-invariant;
3. A is the narrowest: for every operations $B\left(x_{1}, \ldots, x_{n}\right)$ satisfying Properties 1 and 2 , * if $B\left(x_{1}, \ldots, x_{n}\right) \subseteq A\left(x_{1}, \ldots, x_{n}\right)$ for all tuples, * then $B\left(x_{1}, \ldots, x_{n}\right)=A\left(x_{1}, \ldots, x_{n}\right)$ for all tuples.

- Result: Interval median is the only aggregation operation in this sense.

Discussion

Alternative

1-D Case: Can We.
Multi-D Interval-
Home Page

Title Page
12. 1-D Case: Can We Expand Beyond Intervals?

- In our analysis, instead of closed intervals, we can consider general convex subsets of the real line.
- This includes closed, open, semi-open intervals, and intervals with infinite endpoints.
- Can we go beyond intervals?
- It turns out that we cannot:
- Result: ($n=3$ or $n \geq 5$):
- Let a class \mathcal{S} contain, in addition to all the intervals, a non-convex set S_{0}.
- Then, there exists values x_{1}, \ldots, x_{n} for which the \mathcal{S}-aggregate set is empty.

Title Page

13. Multi-D Interval-Based Voting Aggregation

- Let B denote the set of all the boxes

$$
\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{q}, b_{q}\right] .
$$

- Result: For every sequence of tuples x_{1}, \ldots, x_{n}, the B-aggregate set is the box $M_{1} \times \ldots \times M_{q}$, where
- M_{i} is the interval median of the i-th components $x_{1 i}, \ldots, x_{n i}$.
- For the class P of all convex polytopes, P-aggregate can be empty: $x_{1}=(0,0,0, \ldots, 0)$,

$$
x_{2}=(0.1,0.9,0, \ldots, 0), \quad x_{3}=(1,1,0, \ldots, 0) .
$$

- Here, B-aggregate is the median $(0.1,0.9,0, \ldots, 0)$.
- However, the majority of x_{i} (namely, x_{1} and x_{3}) belong to the segment $S=\{(x, x, 0, \ldots, 0): 0 \leq x \leq 1\}$.
- Alas, the median does not belong to this segment.

14. Acknowledgments

This work was supported in part:

- by the National Science Foundation grants:
- HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
- DUE-0926721, and
- by an award from Prudential Foundation.

Discussion

What If We Require

An Alternative
Alternative .

1-D Case: Can We
Multi-D Interval-
Home Page

Title Page

44

Go Back

Full Screen

Close

Quit

15. Proof of the Main 1-D Result

- Let us first prove that every possible U-aggregate x should belong to the median set.
- If $n=2 k+1$, then the majority of $x_{(i)}$ belong to $\left[x_{(1)}, x_{(k+1)}\right]:$ namely, $x_{(1)} \leq \ldots \leq x_{(k+1)}$.
- Thus, every possible U-aggregate x must belong to the same interval, and thus, we must have $x \leq x_{(k+1)}$.

Alternative

1-D Case: Can We.
Multi-D Interval-
Home Page

- Similarly, the majority of elements $x_{(i)}$ belong to $\left[x_{(k+1)}, x_{(n)}\right]$: namely, $x_{(k+1)} \leq \ldots \leq x_{(n)}$.
- Thus, every possible U aggregate x must belong to the same interval, and so, we must have $x \geq x_{(k+1)}$.
- From $x \leq x_{(k+1)}$ and $x \geq x_{(k+1)}$, we conclude that $x=x_{(k+1)}$, i.e., x coincides with the median.
- If $n=2 k$, then the majority of $x_{(i)}$ belong to $\left[x_{(1)}, x_{(k+1)}\right]$: namely, $x_{(1)} \leq \ldots \leq x_{(k+1)}$.
- Thus, every possible U aggregate x must belong to the same interval, and so, we must have $x \leq x_{(k+1)}$.
- Similarly, the majority of $x_{(i)}$ belong to the interval $\left[x_{(k)}, x_{(n)}\right]$: namely, $x_{(k)} \leq \ldots \leq x_{(n)}$.
- Thus, every possible U aggregate x must belong to the same interval, and thus, we must have $x \geq x_{(k)}$.
- So, we conclude that $x_{(k)} \leq x \leq x_{(k+1)}$, i.e., that x is indeed an element of the median interval $\left[x_{(k)}, x_{(k+1)}\right]$.
- To complete the proof, let us prove that every element of the interval median is indeed a possible I-aggregate.

Discussion

- For this, we need to show that:
- if an interval $[a, b]$ contains the majority of $x_{(i)}$,
- then $[a, b]$ contains the interval median.

1-D Interval-Based .

ren

- We need to prove that:
- if an interval $[a, b]$ contains the majority of $x_{(i)}$,
- then $[a, b]$ contains the interval median.
- Let us prove it by considering two possible situations: when n is odd and when n is even.
- Let us show that in the odd case $n=2 k+1$, if the interval $[a, b]$ contains the majority of the elements $x_{(i)}$, then $x_{(k+1)} \in[a, b]$, i.e., $a \leq x_{(k+1)}$ and $x_{(k+1)} \leq b$.
- We will prove both inequalities by contradiction.
- If $a>x_{(k+1)}$, then the interval $[a, b]$ cannot contain any of the $k+1$ elements $x_{(1)} \leq \ldots \leq x_{(k+1)}$.

Page 18 of 23

Go Back

- Thus, $[a, b]$ contains $\leq k$ remaining elements $x_{(k+2)}, \ldots, x_{(n)}$ - which do not form a majority.

Close

- Similarly, if $b<x_{(k+1)}$, then the interval $[a, b]$ cannot contain any of the $k+1$ elements $x_{(k+1)} \leq \ldots \leq x_{(n)}$.
- Thus, this interval contains $\leq k$ remaining elements $x_{(1)}, \ldots, x_{(k)}$, which also do not form a majority.
- So, if the interval $[a, b]$ contains the majority of elements $x_{(i)}$, then it must contain the median $x_{(k+1)}$.
- So, the median is a possible I-aggregate of the values x_{1}, \ldots, x_{n}.
- Let us show that in the even case, when $n=2 k$:
- if the interval $[a, b]$ contains the majority of the elements $x_{(i)}$,
- then $\left[x_{(k)}, x_{(k+1)}\right] \subseteq[a, b]$, so $a \leq x_{(k)} \& x_{(k+1)} \leq b$.

Discussion

Alternative

1-D Case: Can We.
Multi-D Interval-
Home Page

Title Page

- We will prove both inequalities by contradiction.
- If $a>x_{(k)}$, then the interval $[a, b]$ cannot contain any of the k elements $x_{(1)} \leq \ldots \leq x_{(k)}$.
- So, it must contain no more than k remaining elements $x_{(k+1)}, \ldots, x_{(n)}$ - which do not form a majority.
- Similarly, if $b<x_{(k+1)}$, then the interval $[a, b]$ cannot contain any of the k elements $x_{(k+1)} \leq \ldots \leq x_{(n)}$.
- So, it must contain no more than k remaining elements $x_{(1)}, \ldots, x_{(k)}$, which also do not form a majority; thus:
- if the interval $[a, b]$ contains the majority of elements $x_{(i)}$,
- then it must contain the median $\left[x_{(k)}, x_{(k+1)}\right]$.
- So, every element from the interval median is a possible I-aggregate of the values x_{1}, \ldots, x_{n}. Q.E.D.

Discussion

What If We Require
An Alternative
Alternative

1-D Case: Can We.
Multi-D Interval-
Home Page

Title Page

44

20. Proof of the Multi-D Result

- Let us first prove that every possible B-aggregate tuple belongs to the median box $M_{1} \times \ldots \times M_{q}$.
- Let us fix one of the dimensions i and consider
$x_{1 i}, \ldots, x_{n i}$.
- For all $j \neq i$, consider the smallest intervals $\left[A_{j}, B_{j}\right] \stackrel{\text { def }}{=}$ $\left[\min _{k}\left(x_{k j}\right), \max _{k}\left(x_{k j}\right)\right]$ containing all $x_{k j}$.

Alternative

1-D Case: Can We.
Multi-D Interval-
Home Page

- For each possible B-aggregate tuple $x=\left(e_{1}, \ldots, e_{q}\right)$, the desired property holds for all the boxes of the type

$$
B=\left[A_{1}, B_{1}\right] \times \ldots \times\left[A_{i-1}, B_{i-1}\right] \times\left[a_{i}, b_{i}\right] \times\left[A_{i+1}, B_{i+1}\right] \times \ldots \times
$$

- Since all other intervals forming this box are the largest possible, $x_{j} \in B \Leftrightarrow x_{j 1} \in\left[a_{i}, b_{i}\right]$.
- Thus, for these boxes:
- the definition of a possible B-aggregate of the tuples x_{1}, \ldots, x_{n} implies that
- the i-th component e_{i} of the tuple x is a possible I-aggregate of the components $x_{1 i}, \ldots, x_{n i}$.
- We already know that this implies that e_{i} belongs to the interval median M_{1} of these components.
- Vice versa, let us prove that every tuple $x \in M_{1} \times \ldots \times$ M_{q} is a possible B-aggregate.
- Indeed, let $x=\left(e_{1}, \ldots, e_{q}\right) \in M_{1} \times \ldots \times M_{q}$, and let us assume that the majority of x_{i} belong to the box

$$
B=\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{q}, b_{q}\right] .
$$

- This implies, for every component i, that the majority of the values $x_{1 i}, \ldots, x_{n i}$ belong to the interval $\left[a_{i}, b_{i}\right]$.

Discussion

What If We Require
An Alternative

Alternative .

1-D Case: Can We.
Multi-D Interval-
Home Page

Title Page

- For every component i, the majority of the values
$x_{1 i}, \ldots, x_{n i}$ belong to the interval $\left[a_{i}, b_{i}\right]$.
- We already know, from the 1-D case, that this implies that $e_{i} \in\left[a_{i}, b_{i}\right]$ for every i.
- Thus, we indeed have

Discussion

What If We Require
An Alternative
Alternative
1-D Case: Can We
Multi-D Interval-

Home Page

$$
x=\left(e_{1}, \ldots, e_{q}\right) \in\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{q}, b_{q}\right]=B
$$

- The proposition is proven.

