
Formulation of the . . .

What If We Allow All . . .

1-D Interval-Based . . .

Discussion

What If We Require . . .

An Alternative . . .

Alternative . . .

1-D Case: Can We . . .

Multi-D Interval- . . .

Home Page

Title Page

JJ II

J I

Page 1 of 23

Go Back

Full Screen

Close

Quit

Voting Aggregation Leads to
(Interval) Median

Olga Kosheleva1, and Vladik Kreinovich2

1Department of Teacher Education
2Department of Computer Science

University of Texas at El Paso
El Paso, TX 79968, USA

olgak@utep.edu, vladik@utep.edu



Formulation of the . . .

What If We Allow All . . .

1-D Interval-Based . . .

Discussion

What If We Require . . .

An Alternative . . .

Alternative . . .

1-D Case: Can We . . .

Multi-D Interval- . . .

Home Page

Title Page

JJ II

J I

Page 2 of 23

Go Back

Full Screen

Close

Quit

1. Formulation of the Problem

• For many real-real problems, there are several different
decision making tools.

• Each of these tools has its advantages: otherwise, it
would not be used.

• To combine the advantages of different tools, it there-
fore desirable to aggregate their results.

• One of the most widely used methods of aggregating
several results is voting:

– if the majority of results satisfy a certain property,

– then we conclude that the actual value has this
property.

• Example: if most classifiers classify the disease as pneu-
monia, we conclude that it is pneumonia.
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2. What We Do and Why This Is Non-Trivial

• What we do: we analyze how voting can be used to
aggregate several numerical estimates.

• Observation: voting is closely related to the AI notion
of a “typical” object of a class.

• Example: what is an intuitive meaning of a term “typ-
ical professor”?

– if most professors are absent-minded,

– then we expect a “typical” professor to be absent-
minded as well.

• Problem: no one is perfectly typical, e.g., due to their
specific research area.

• This is why in AI, there is an ongoing discussion on
how best to describe typical (not abnormal) objects.
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3. Main Definition

• We have: n estimates xi = (xi1, . . . , xiq) (1 ≤ i ≤ n)
for the values of q quantities.

• We want: to combine these estimates into a single es-
timate x, so that:

– if the majority of xi satisfies a property P ,

– then x should satisfy also this property.

• Let q ≥ 1, let S be a class of subsets of IRq.

• We say that x ∈ IRq is a possible S-aggregate of
x1, . . . , xn ∈ IRq if for every S ∈ S:

– if the majority of xi are in this set,

– then x should be in this set.

• The set of all possible S-aggregates is called the S-
aggregate of the elements x1, . . . , xn.
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4. What If We Allow All Properties?

• Let U
def
= 2IR

q

be the set of all subsets of IRq.

• For every q ≥ 1 and n ≥ 3, if all n elements x1, . . . , xn
are all different, then their U-aggregate is empty.

• Proof:

– All xi belong to X = {x1, . . . , xn}, so x ∈ X hence
x = xi for some i.

– But most elements xj are different from xi, i.e.,
xj ∈ −{xi}, thus, x 6= xi.

– Contradiction shows that no such x is possible, i.e.,
that the U -aggregare is empty.

• Thus, the aggregation problem is indeed non-trivial.
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5. When Is the U-Aggregate Non-Empty?

• Let q ≥ 1.

• When n = 1 then the U-aggregate set of x1 is {x1}.

• When n = 2, then the U-aggregate set is {x1, x2}.

• For all odd n ≥ 3:

– if the majority of x1, . . . , xn are equal to each other,
then the U-aggregate set is this common element.

• For all even n ≥ 4:

– if the majority of x1, . . . , xn are equal to each other,
then the U-aggregate set is this common element;

– if half of xi are equal to a, and all others ae equal
to b 6= a, then the U-aggregate is {a, b}.

• In all other cases, the U-aggregate set is empty.
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6. 1-D Interval-Based Voting Aggregation Leads
to (Interval) Median

• Let I denote the set of all intervals [a, b].

• For every sequence x1, . . . , xn, let x(1) ≤ . . . ≤ x(n)
denote the result of sorting the numbers xi in increasing
order.

• When n = 2k+1 for some integer k, then by a median,
we mean the value x(k+1).

• When n is even, i.e., when n = 2k for some integer k,
then by a median, we mean the interval [x(k), x(k+1)].

• The median will also be called an interval median.

• Resyult: For every sequence of numbers x1, . . . , xn,
the I-aggregate set is equal to the median.
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7. Discussion

• Median is the most robust aggregation, i.e., the least
vulnerable to possible outliers.

• Thus, median is often used in data processing.

• Median is used in econometrics, as a more proper mea-
sure of “average” (“typical”) income than the mean.

• Otherwise, a single billionaire living in a small town:

– increases its mean income

– without affecting the living standards of its inhab-
itants.
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8. What If We Require Strong Majority?

• What if we only require xi ∈ S when the proportion of
values xi ∈ S exceeds a certain threshold t > 0.5?

• The set of all possible t-S-aggregates is called the t-S-
aggregate set.

• For every x1, . . . , xn, and for every t, the t-I-aggregate
set is the interval [x(n−k+1), x(k)], where k = dt · ne.



Formulation of the . . .

What If We Allow All . . .

1-D Interval-Based . . .

Discussion

What If We Require . . .

An Alternative . . .

Alternative . . .

1-D Case: Can We . . .

Multi-D Interval- . . .

Home Page

Title Page

JJ II

J I

Page 10 of 23

Go Back

Full Screen

Close

Quit

9. An Alternative Derivation of the Interval Me-
dian

• Interval median can be also derived from other natural
conditions:

• That it is a continuous function of x1, . . . , xn.

• That it is invariant with respect to arbitrary strictly
increasing or strictly decreasing re-scalings:

– such re-scalings which make physical sense;

– e.g., we can measure sound energy in Watts or in
decibels – which are logarithmic units.

• That this is the narrowest such operation:

– else we could, e.g., take an operation returning the

whole range
[
min

i
xi,max

i
xi

]
.
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10. Formalizing Scale-Invariance

• We say that a mapping A(x1, . . . , xn) =
[a(x1, . . . , xn), a(x1, . . . , xn)] is scale-invariant if:

– for each strictly increasing f(x):

a(f(x1), . . . , f(xn)) = f(a(x1, . . . , xn)) and

a(f(x1), . . . , f(xn)) = f(a(x1, . . . , xn));

– for each strictly decreasing continuous f(x):

a(f(x1), . . . , f(xn)) = f(a(x1, . . . , xn)) and

a(f(x1), . . . , f(xn)) = f(a(x1, . . . , xn));
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11. Alternative Derivation: Result

• Let n ≥ 1 be fixed.

• By an aggregation operation, we mean a mapping that
maps each tuple x1, . . . , xn into an interval

A(x1, . . . , xn) = [a(x1, . . . , xn), a(x1, . . . , xn)] so that:

1. this operation is continuous, i.e., both functions
a(x1, . . . , xn) and a(x1, . . . , xn) are continuous;

2. this operation is scale-invariant;

3. A is the narrowest: for every operations
B(x1, . . . , xn) satisfying Properties 1 and 2,

∗ if B(x1, . . . , xn) ⊆ A(x1, . . . , xn) for all tuples,

∗ then B(x1, . . . , xn) = A(x1, . . . , xn) for all tu-
ples.

• Result: Interval median is the only aggregation oper-
ation in this sense.
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12. 1-D Case: Can We Expand Beyond Intervals?

• In our analysis, instead of closed intervals, we can con-
sider general convex subsets of the real line.

• This includes closed, open, semi-open intervals, and
intervals with infinite endpoints.

• Can we go beyond intervals?

• It turns out that we cannot:

• Result: (n = 3 or n ≥ 5):

– Let a class S contain, in addition to all the inter-
vals, a non-convex set S0.

– Then, there exists values x1, . . . , xn for which the
S-aggregate set is empty.
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13. Multi-D Interval-Based Voting Aggregation

• Let B denote the set of all the boxes

[a1, b1]× . . .× [aq, bq].

• Result: For every sequence of tuples x1, . . . , xn, the
B-aggregate set is the box M1 × . . .×Mq, where

• Mi is the interval median of the i-th components
x1i, . . . , xni.

• For the class P of all convex polytopes, P -aggregate
can be empty: x1 = (0, 0, 0, . . . , 0),

x2 = (0.1, 0.9, 0, . . . , 0), x3 = (1, 1, 0, . . . , 0).

• Here, B-aggregate is the median (0.1, 0.9, 0, . . . , 0).

• However, the majority of xi (namely, x1 and x3) belong
to the segment S = {(x, x, 0, . . . , 0) : 0 ≤ x ≤ 1}.

• Alas, the median does not belong to this segment.
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15. Proof of the Main 1-D Result

• Let us first prove that every possible U -aggregate x

should belong to the median set.

• If n = 2k + 1, then the majority of x(i) belong to
[x(1), x(k+1)]: namely, x(1) ≤ . . . ≤ x(k+1).

• Thus, every possible U -aggregate x must belong to the
same interval, and thus, we must have x ≤ x(k+1).

• Similarly, the majority of elements x(i) belong to
[x(k+1), x(n)]: namely, x(k+1) ≤ . . . ≤ x(n).

• Thus, every possible U aggregate x must belong to the
same interval, and so, we must have x ≥ x(k+1).

• From x ≤ x(k+1) and x ≥ x(k+1), we conclude that
x = x(k+1), i.e., x coincides with the median.

• If n = 2k, then the majority of x(i) belong to
[x(1), x(k+1)]: namely, x(1) ≤ . . . ≤ x(k+1).
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16. Proof of the Main 1-D Result (cont-d)

• Thus, every possible U aggregate x must belong to the
same interval, and so, we must have x ≤ x(k+1).

• Similarly, the majority of x(i) belong to the interval
[x(k), x(n)]: namely, x(k) ≤ . . . ≤ x(n).

• Thus, every possible U aggregate x must belong to the
same interval, and thus, we must have x ≥ x(k).

• So, we conclude that x(k) ≤ x ≤ x(k+1), i.e., that x is
indeed an element of the median interval [x(k), x(k+1)].

• To complete the proof, let us prove that every element
of the interval median is indeed a possible I-aggregate.

• For this, we need to show that:

– if an interval [a, b] contains the majority of x(i),

– then [a, b] contains the interval median.
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17. Proof of the Main 1-D Result (cont-d)

• We need to prove that:

– if an interval [a, b] contains the majority of x(i),

– then [a, b] contains the interval median.

• Let us prove it by considering two possible situations:
when n is odd and when n is even.

• Let us show that in the odd case n = 2k + 1, if the
interval [a, b] contains the majority of the elements x(i),
then x(k+1) ∈ [a, b], i.e., a ≤ x(k+1) and x(k+1) ≤ b.

• We will prove both inequalities by contradiction.

• If a > x(k+1), then the interval [a, b] cannot contain any
of the k + 1 elements x(1) ≤ . . . ≤ x(k+1).

• Thus, [a, b] contains ≤ k remaining elements
x(k+2), . . . , x(n) – which do not form a majority.
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18. Proof of the Main 1-D Result (cont-d)

• Similarly, if b < x(k+1), then the interval [a, b] cannot
contain any of the k + 1 elements x(k+1) ≤ . . . ≤ x(n).

• Thus, this interval contains ≤ k remaining elements
x(1), . . . , x(k), which also do not form a majority.

• So, if the interval [a, b] contains the majority of ele-
ments x(i), then it must contain the median x(k+1).

• So, the median is a possible I-aggregate of the values
x1, . . . , xn.

• Let us show that in the even case, when n = 2k:

– if the interval [a, b] contains the majority of the
elements x(i),

– then [x(k), x(k+1)] ⊆ [a, b], so a ≤ x(k) &x(k+1) ≤ b.

• We will prove both inequalities by contradiction.
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19. Proof of the Main 1-D Result (final part)

• If a > x(k), then the interval [a, b] cannot contain any
of the k elements x(1) ≤ . . . ≤ x(k).

• So, it must contain no more than k remaining elements
x(k+1), . . . , x(n) – which do not form a majority.

• Similarly, if b < x(k+1), then the interval [a, b] cannot
contain any of the k elements x(k+1) ≤ . . . ≤ x(n).

• So, it must contain no more than k remaining elements
x(1), . . . , x(k), which also do not form a majority; thus:

– if the interval [a, b] contains the majority of ele-
ments x(i),

– then it must contain the median [x(k), x(k+1)].

• So, every element from the interval median is a possible
I-aggregate of the values x1, . . . , xn. Q.E.D.
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20. Proof of the Multi-D Result

• Let us first prove that every possible B-aggregate tuple
belongs to the median box M1 × . . .×Mq.

• Let us fix one of the dimensions i and consider
x1i, . . . , xni.

• For all j 6= i, consider the smallest intervals [Aj, Bj]
def
=[

min
k

(xkj),max
k

(xkj)
]

containing all xkj.

• For each possible B-aggregate tuple x = (e1, . . . , eq),
the desired property holds for all the boxes of the type

B = [A1, B1]×. . .×[Ai−1, Bi−1]×[ai, bi]×[Ai+1, Bi+1]×. . .×

• Since all other intervals forming this box are the largest
possible, xj ∈ B ⇔ xj1 ∈ [ai, bi].
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21. Proof of the Multi-D Result (cont-d)

• Thus, for these boxes:

– the definition of a possible B-aggregate of the tu-
ples x1, . . . , xn implies that

– the i-th component ei of the tuple x is a possible
I-aggregate of the components x1i, . . . , xni.

• We already know that this implies that ei belongs to
the interval median M1 of these components.

• Vice versa, let us prove that every tuple x ∈M1× . . .×
Mq is a possible B-aggregate.

• Indeed, let x = (e1, . . . , eq) ∈ M1 × . . . ×Mq, and let
us assume that the majority of xi belong to the box

B = [a1, b1]× . . .× [aq, bq].

• This implies, for every component i, that the majority
of the values x1i, . . . , xni belong to the interval [ai, bi].
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22. Proof of the Multi-D Result (final part)

• For every component i, the majority of the values
x1i, . . . , xni belong to the interval [ai, bi].

• We already know, from the 1-D case, that this implies
that ei ∈ [ai, bi] for every i.

• Thus, we indeed have

x = (e1, . . . , eq) ∈ [a1, b1]× . . .× [aq, bq] = B.

• The proposition is proven.
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