Introduction	Simplification	Results	Conclusion
0000	000000	000000	00

Uses of Methods with Result Verification for Simplified Control-Oriented SOFC Models

Ekaterina Auer and Stefan Kiel

University of Technology, Business and Design Wismar

June 17, 2016

E. Auer

University of Technology, Business and Design Wismar

Introduction	Simplification	Results	Conclusion
•000	000000	000000	00
Introduction			

SOFC: Devices converting chemical energy into electricity

An important characteristic: Temperature!

Control-oriented models: ODEs with unknown parameters to be identified from real-life data

 $\begin{array}{ll} \mbox{Identification: Least squares/Global optimization} \\ \Phi(p) = \sum\limits_{k=1}^{T\approx 17500} \sum\limits_{j=1}^{n_m} \Big(\underbrace{y_j(t_k,p)}_{\mbox{solution to ODEs}} & -\underbrace{y_{j,m}(t_k)}_{\mbox{measured data}} \Big)^2 \rightarrow \min \end{array}$

Traditional techniques: y(t, p) reflects only stationary operating states

---- Goal: Models for a range of operating conditions (better control!)

A cooperation with the University of Rostock

University of Technology, Business and Design Wismar

Result Verification for Simplified SOFC Models

SOFC stack: A distributed parameter system naturally described by a non-linear partial differential equation

Control-oriented models: ODEs obtained by spatial semi-discretization Difficulty: The temperature can be measured only at few positions \rightsquigarrow State/disturbance estimators are necessary

Basic control inputs: Gas preheaters (modeled or from measurements) Types of models: Different kinds in dependence on

- the used arithmetics (floating point/interval/other)
- "accuracy" of the solution y(t,p) (analytic/approximated/exact)

Introduction	Simplification	Results	Conclusion
00●0	000000	000000	00
4			

(Still) Modeling Temperature $\theta(t)$ for SOFCs

Important for θ : Heat capacities of gases modeled as $c_{gas}(\theta) = c_{gas,0} + c_{gas,1} \cdot \theta + c_{gas,2} \cdot \theta^2$

Example of a model with (just) one finite volume element:

dtheta(1.1) = T AG inv*(v N2 d-v N2-d N2 sch):dtheta(2.1) = T SL AG inv*(v N2-v N2 in):dtheta(3.1) = 0: $dtheta(4,1) = T_AG_inv*(v_H2_d-v_H2_d_H2_sch); dtheta(5,1) = T_SL_AG_inv*(v_H2-v_H2_in); dtheta(6,1) = 0;$ dtheta(7,1) = T_AG_inv*(v_H20_d-v_H20_d_H20_sch);dtheta(8,1) = T_SL_AG_inv*(v_H20-v_H20_in);dtheta(9,1) = 0; dtheta(10.1) = T CG inv*(v CG d-v CG-d CG sch):dtheta(11.1) = T SL CG inv*(v CG-v CG in):dtheta(12.1) = 0: dtheta(13,1)=-c_m_inv*(-234000*alpha_i*z*F*theta_A-448500*alpha_j*z*F*theta_A-I_ges^2*R_el*z*F -z*F*v_CG_in*c_CG_0+234000*alpha_i*z*F*theta_1_1_1-z*F*v_N2_in*c_N2_0-345000*alpha_k*z*F*theta_A +448500*alpha j*z*F*theta 1 1 1+345000*alpha k*z*F*theta 1 1 1-z*F*v H20 in*c H20 1*theta 1 1 1 -z*F*v H20 in*c H20 2*theta 1 1 1^2+z*F*m dot AG H20 in*theta 1 1 1*c H20 0+z*F*m dot AG H20 in* theta_1_1^2*c_H20_1+z*F*m_dot_AG_H20_in*theta_1_1^3*c_H20_2-I_ges*R_delta_H_H2_0-z*F*v_H2_in* c_H2_1*theta_1_1_1-z*F*v_H2_in*c_H2_2*theta_1_1_1^2+z*F*m_dot_AG_H2_in*theta_1_1_1*c_H2_0+ z*F*m dot AG H2 in*theta 1 1 1^2*c H2 1+z*F*m dot AG H2 in*theta 1 1 1^3*c H2 2+z*F*m dot CG in* theta_1_1_1*c_CG_0-z*F*v_CG_in*c_CG_2*theta_1_1_1^2-z*F*v_CG_in*c_CG_1*theta_1_1_1+z*F*m_dot_CG_in* theta_1_1_1^3*c_CG_2-I_ges*R_delta_H_H2_1*theta_1_1_I-I_ges*R_delta_H_H2_2*theta_1_1_1^2 +z*F*m dot CG in*theta 1 1 1^2*c CG 1-z*F*v N2 in*c N2 1*theta 1 1 1+z*F*m dot AG N2 in *theta_1_1_1^3*c_N2_2-z*F*v_N2_in*c_N2_2*theta_1_1_1^2+z*F*m_dot_AG_N2_in*theta_1_1_1*c_N2_0+ z*F*m dot AG N2 in*theta 1 1 1^2*c N2 1-z*F*v H2 in*c H2 0-z*F*v H20 in*c H20 0)/z/F:

Introduction	Simplification	Results	Conclusion
0000	000000	000000	00

(Still) Modeling Temperature $\theta(t)$ for SOFCs

Important for θ : Heat capacities of gases modeled as $c_{qas}(\theta) = c_{qas,0} + c_{qas,1} \cdot \theta + c_{qas,2} \cdot \theta^2$

Example of a model with (just) one finite volume element:

dtheta(1.1) = T AG inv*(v N2 d-v N2-d N2 sch):dtheta(2.1) = T SL AG inv*(v N2-v N2 in):dtheta(3.1) = 0: $dtheta(4,1) = T_AG_inv*(v_H2_d-v_H2_d_H2_sch); dtheta(5,1) = T_SL_AG_inv*(v_H2-v_H2_in); dtheta(6,1) = 0;$ dtheta(7,1) = T_AG_inv*(v_H20_d-v_H20_d_H20_sch);dtheta(8,1) = T_SL_AG_inv*(v_H20-v_H20_in);dtheta(9,1) = 0; dtheta(10.1) = T CG inv*(v CG d-v CG-d CG sch):dtheta(11.1) = T SL CG inv*(v CG-v CG in):dtheta(12.1) = 0: dtheta(13,1)=-c_m_inv*(-234000*alpha_i*z*F*theta_A-448500*alpha_j*z*F*theta_A-I_ges^2*R_el*z*F -z*F*v_CG_in*c_CG_0+234000*alpha_i*z*F*theta_1_1_1-z*F*v_N2_in*c_N2_0-345000*alpha_k*z*F*theta_A +448500*alpha j*z*F*theta 1 1 1+345000*alpha k*z*F*theta 1 1 1-z*F*v H20 in*c H20 1*theta 1 1 1 -z*F*v H20 in*c H20 2*theta 1 1 1^2+z*F*m dot AG H20 in*theta 1 1 1*c H20 0+z*F*m dot AG H20 in* theta_1_1^2*c_H20_1+z*F*m_dot_AG_H20_in*theta_1_1^3*c_H20_2-I_ges*R_delta_H_H2_0-z*F*v_H2_in* c H2 1*theta 1 1 1-z*F*v H2 in*c H2 2*theta 1 1 1^2+z*F*m dot AG H2 in*theta 1 1 1*c H2 0+ z*F*m dot AG H2 in*theta 1 1 1^2*c H2 1+z*F*m dot AG H2 in*theta 1 1 1^3*c H2 2+z*F*m dot CG in* theta_1_1_1*c_CG_0-z*F*v_CG_in*c_CG_2*theta_1_1_1^2-z*F*v_CG_in*c_CG_1*theta_1_1_1+z*F*m_dot_CG_in* theta_1_1_1^3*c_CG_2-I_ges*R_delta_H_H2_1*theta_1_1_I-I_ges*R_delta_H_H2_2*theta_1_1_1^2 +z*F*m dot CG in*theta 1 1 1^2*c CG 1-z*F*v N2 in*c N2 1*theta 1 1 1+z*F*m dot AG N2 in *theta_1_1_1^3*c_N2_2-z*F*v_N2_in*c_N2_2*theta_1_1_1^2+z*F*m_dot_AG_N2_in*theta_1_1_1*c_N2_0+ z*F*m_dot_AG_N2_in*theta_1_1_1^2*c_N2_1-z*F*v_H2_in*c_H2_0-z*F*v_H20_in*c_H20_0)/z/F;

Idea: Simplify the models, but not too much (wide range!)

E. Auer

University of Technology, Business and Design Wismar

Introduction	Simplification	Results	Conclusion
0000	000000	000000	00

(Still) Modeling Temperature $\theta(t)$ for SOFCs

Important for θ : Heat capacities of gases modeled as $c_{gas}(\theta) = c_{gas,0} + c_{gas,1} \cdot \theta + c_{gas,2} \cdot \theta^2$

Example of a model with (just) one finite volume element:

dtheta(1.1) = T AG inv*(v N2 d-v N2-d N2 sch):dtheta(2.1) = T SL AG inv*(v N2-v N2 in):dtheta(3.1) = 0: $dtheta(4,1) = T_AG_inv*(v_H2_d-v_H2_d_H2_sch); dtheta(5,1) = T_SL_AG_inv*(v_H2-v_H2_in); dtheta(6,1) = 0;$ dtheta(7,1) = T_AG_inv*(v_H20_d-v_H20_d_H20_sch);dtheta(8,1) = T_SL_AG_inv*(v_H20-v_H20_in);dtheta(9,1) = 0; dtheta(10.1) = T CG inv*(v CG d-v CG-d CG sch):dtheta(11.1) = T SL CG inv*(v CG-v CG in):dtheta(12.1) = 0: dtheta(13,1)=-c_m_inv*(-234000*alpha_i*z*F*theta_A-448500*alpha_j*z*F*theta_A-I_ges^2*R_el*z*F -z*F*v_CG_in*c_CG_0+234000*alpha_i*z*F*theta_1_1_1-z*F*v_N2_in*c_N2_0-345000*alpha_k*z*F*theta_A +448500*alpha j*z*F*theta 1 1 1+345000*alpha k*z*F*theta 1 1 1-z*F*v H20 in*c H20 1*theta 1 1 1 -z*F*v H20 in*c H20 2*theta 1 1 1^2+z*F*m dot AG H20 in*theta 1 1 1*c H20 0+z*F*m dot AG H20 in* theta_1_1^2*c_H20_1+z*F*m_dot_AG_H20_in*theta_1_1^3*c_H20_2-I_ges*R_delta_H_H2_0-z*F*v_H2_in* c_H2_1*theta_1_1_1-z*F*v_H2_in*c_H2_2*theta_1_1_1^2+z*F*m_dot_AG_H2_in*theta_1_1_1*c_H2_0+ z*F*m dot AG H2 in*theta 1 1 1^2*c H2 1+z*F*m dot AG H2 in*theta 1 1 1^3*c H2 2+z*F*m dot CG in* theta_1_1_1*c_CG_0-z*F*v_CG_in*c_CG_2*theta_1_1_1^2-z*F*v_CG_in*c_CG_1*theta_1_1_1+z*F*m_dot_CG_in* theta_1_1_1^3*c_CG_2-I_ges*R_delta_H_H2_1*theta_1_1_1-I_ges*R_delta_H_H2_2*theta_1_1_1^2 +z*F*m dot CG in*theta 1 1 1^2*c CG 1-z*F*v N2 in*c N2 1*theta 1 1 1+z*F*m dot AG N2 in *theta_1_1_1^3*c_N2_2-z*F*v_N2_in*c_N2_2*theta_1_1_1^2+z*F*m_dot_AG_N2_in*theta_1_1_1*c_N2_0+ z*F*m_dot_AG_N2_in*theta_1_1_1^2*c_N2_1-z*F*v_H2_in*c_H2_0-z*F*v_H20_in*c_H20_0)/z/F;

Idea: Simplify the models, but not too much (wide range!)

Approach: $c_{gas}(\theta) = c_{gas,0}$ or $c_{gas}(\theta) = c_{gas,0} + c_{gas,1} \cdot \theta \leftarrow \text{Topic 1}$

Introduction	on		Simplifica	tion	Results	Conclusion
	~		<u><u> </u></u>	1	 	

How Good are the Simplified Models?

Question 0: How good is the correspondence to reality? What about the validity range?

Question 1: Can we take uncertainty in parameters into account?

Question 2: Can we find out which parameters these models are most sensitive to?

Question 3: Is it possible/useful to solve the equations analytically?

Approaches to answers \leftarrow Topic 2:

- $1 \rightarrow$ Result verification (intervals, affine forms, Taylor models)
- $2 \rightarrow$ Sensitivity analysis (compute $\frac{\partial \theta}{\partial p_i}$)
- $3 \rightarrow \mbox{ Yes}$ in some cases

Tool: $\operatorname{UNIVERMEC}$ allowing for an easy reuse and flexibility

Introduction	
0000	

Characteristics of SOFC Temperature Models

$$\Phi(p) = \sum_{k=1}^{T} \sum_{j=1}^{n_m} \left(\underbrace{\theta_j(t_k, p)}_{\text{orbiting to ODE}} - \underbrace{\theta_{j,m}(t_k)}_{\text{orbiting to ODE}} \right)^2 \to \min$$

solution to ODEs

measured data

F1 How exactly is $\theta(t_k, p)$ obtained?

- F1.a A closed-form solution
- F1.b Approximation by an expression (e.g., with the Euler method)
- F1.c Numerical solution from a "black-box" solver
- F2 What is the underlying technique for the implementation?
- F2.a Floating point F2.b Interval F2.c Other verified Examples: High verification degrees F1.b& F2.b-c "Verified approximation" F1.c&F2.b Verified IVP solvers
 - [+] Rounding cared for
 - [-] Overestimation
 - [+] Easy derivatives (AD)
 - $\left[+\right]$ Easily portable to the GPU

- [+] Verifies the whole model
 - [+] Verifies the whole model
 - [-] Derivatives require solving
 - an additional ODE
 - [-] High computational effort

Good: UNIVERMEC allows us to implement all combinations

University of Technology, Business and Design Wismar

Result Verification for Simplified SOFC Models

Introduction	Simplification	Results	Conclusion
0000	00000	000000	00
Simplified Models			

Trade-off between verification degree and computing time necessary $\downarrow\downarrow$

Higher verification degrees in real-time \rightsquigarrow Model simplification

Simplifying assumptions

- $\rightarrow\,$ The nitrogen is the only anode gas for the heating phase
- $\rightarrow~$ One volume element for the whole stack
- → Heat capacities of all gases are constant $(c_{gas}(\theta) = c_{0,gas})$ or linear $(c_{gas}(\theta) = c_{0,gas} + c_{1,gas} \cdot \theta)$

Generally, we are interested in all combinations of F1& F2 Actually, we consider F1.a-b with

F2.a for parameter identification F2.a-c for simulation

Introduction	Simplification	Results	Conclusion
0000	00000	000000	00
Parameters to Be	Identified		

$lpha_i$, $lpha_j$, $lpha_k$	coefficients of heat convection
$c_{N_2,0}$, $c_{N_2,1}$	heat capacity of N_2 as $c_{N_2}(heta)=c_{N_2,0}(+c_{N_2,1}\cdot heta)$
с _{СС,0} , с _{СС,1}	heat capacity of the cathode gas
T_{AG}^{inv}	inverse time constant of the anode gas preheater
T_{CG}^{inv}	inverse time constant of the cathode gas preheater
$T^{inv}_{SL,AG}$	inverse time constant of the anode gas supply line
$T^{inv}_{SL,CG}$	inverse time constant of the cathode gas supply line
С	specific heat capacity of the stack module
m	mass of the stack module
c_m^{inv}	$=rac{1}{c\cdot m}$ with the mass m and heat capacity c of the stack

E. Auer

Introduction	Simplification	Results	Conclusion
0000	000000	000000	00
Control Variables			

- $\dot{m}_{N_2}^{in}$ mass flow of anode gas (recorded data)
- \dot{m}_{CG}^{in} mass flow of cathode gas (recorded data)
- $heta_A$ ambient temperature
- $\begin{array}{ll} \theta^d_{AG} & \mbox{desired temperature of the anode gas (recorded data)} \\ \theta^d_{CG} & \mbox{desired temperature of the cathode gas (recorded data)} \\ u_1 = v^d_{N_2} & \mbox{desired } v_{N_2} = \theta^d_{AG} \cdot \dot{m}^{in}_{N_2} \\ u_2 = v^d_{CG} & \mbox{desired } v_{CG} = \theta^d_{CG} \cdot \dot{m}^{in}_{CG} \end{array}$

Introduction	Simplification	Results	Conclusion
0000	0000●0	000000	00

The Simplified Model with $c_{gas}(\theta) = c_{0,gas}$

Solution:
$$y_0(t) = u_1 - (u_1 - y_0^{\text{ic}})e^{-T_{\text{NG}}^{\text{inv}}(t-t_0)}$$

 $y_1(t) = u_1 - \frac{T_{\text{SL,AG}}^{\text{inv}}}{T_{\text{SL,AG}}^{\text{inv}} - T_{\text{AG}}^{\text{inv}}} (u_1 - y_0^{\text{ic}})e^{-T_{\text{AG}}^{\text{inv}}(t-t_0)} + k_{\text{N2}}e^{-T_{\text{SL,AG}}^{\text{inv}}(t-t_0)},$
 $\theta(t) = \mathcal{I}_{\text{N2}}(t) + \mathcal{I}_{\text{CG}}(t) + k_{\theta}e^{-c_m^{\text{inv}} \cdot k_{\text{lin}}(t-t_0)} - \frac{k_{\text{const}}}{k_{\text{lin}}},$

with defined expressions for $k_{\rm N2},\, \mathcal{I}_{\rm N2/CG}(t),\, k_{\theta}$

The MATLAB-generated solution is too unstable!

University of Technology, Business and Design Wismar

Result Verification for Simplified SOFC Models

E. Auer

Simplification 00000 The Simplified Model with $c_{aas}(\theta) = c_{0,aas} + c_{1,aas} \cdot \theta$ ODEs for preheaters \rightsquigarrow a Riccati equation for θ Measured values for preheaters \rightsquigarrow an expression for θ Model: $\dot{\theta} = -c_m^{inv} \cdot (k_{co} + k_{lin}\theta + k_{sa}\theta^2)$ with $k_a = (234\alpha_i + 448.5\alpha_i + 345\alpha_k) \cdot 10^3, \ k_{co} = -\theta_A k_a - (y_{3,m} c_{CG,0} + y_{1,m} c_{N_2,0})$ $k_{lin} = k_a + \dot{m}_{CG}^{in} \cdot c_{CG,0} + \dot{m}_{N_2}^{in} \cdot c_{N_2,0} - (y_{3,m}c_{CG,1} + y_{1,m}c_{N_2,1})$ $k_{sq} = \dot{m}_{CG}^{in} \cdot c_{CG,1} + \dot{m}_{N_2}^{in} \cdot c_{N_2,1}$ Solution in dependence on $D = k_{lin}^2 - 4 \cdot k_{co} \cdot k_{sa}$

$$\begin{split} D > 0: \theta(t) = & \frac{\sqrt{D}/k_{sq}}{1 - e^{-c_m^{inv}(t-t_0)\sqrt{D}} \cdot \left(1 - \frac{2\sqrt{D}}{2k_{sq}\theta^{ic} + k_{lin} + \sqrt{D}}\right)} - \frac{k_{lin} + \sqrt{D}}{2k_{sq}} \\ D < 0: \theta(t) = & \frac{\sqrt{-D}\tan\left(-\frac{\sqrt{-D}}{2}c_m^{inv}(t-t_0) + \theta^c\right) - k_{lin}}{2k_{sq}} , \ \theta^c = \operatorname{atan}\left(\frac{2k_{sq}\theta^{ic} + k_{lin}}{\sqrt{-D}}\right) \end{split}$$

$$D = 0: \theta(t) = \frac{2\theta^{ic} + k_{lin}/k_{sq}}{2 + c_m^{inv}(t - t_0)(2k_{sq}\theta^{ic} + k_{lin})} - \frac{k_{lin}}{2k_{sq}}$$

University of Technology, Business and Design Wismar

Result Verification for Simplified SOFC Models

E. Auer

Introduction	Simplification	Results	Conclusion
0000	000000	•00000	00
Overview			

Two stages: Parameter identification and simulation Two models: M1 ($c_{aas}(\theta) = c_{0,aas}$) and M2 ($c_{aas}(\theta) = c_{0,aas} + c_{1,aas} \cdot \theta$) Identification: Goal A parameter set p with the smallest $\Phi(p)$ Possibilities: Analytical solution (F1.a) or approximation (F1.b) with doubles/intervals (F2.a-b) Note: F1.c is still too expensive computationally (\rightarrow parallelization) Means: MATLAB; IPOPT and GlobOpt in UNIVERMEC Simulation: Goals Identify p_{s} the models are most sensitive to; take into account uncertainty

Possibilities: Analytical (F1.a) or numerical (F1.c) solution with doubles/intervals/AA/TM (F2.a-c)

Note: F1.b is not interesting here!

This helps to identify the overall usage areas for M1 and M2!

University of Technology, Business and Design Wismar

Introduction	Simplification	Results	Conclusion
0000	000000	○●○○○○	00

UNIVERMEC: Function Specification

Important: Interoperability

The capability to communicate, execute programs, or transfer data among various functional units in a manner that requires the user to have little or no knowledge of the unique characteristics of those units

Necessary: Formalizations for arithmetics, types of enclosures, etc.

 $f : \mathbb{R}^n \mapsto \mathbb{R}^m, \text{ tools for user-defined}$ functions (inductive), analytical expressions or C++ code blocks

Function extensions: Evaluated with all arithmetics supported by core Features: set of functionalities associated with f (e.g., differentiability) FR object: Tuple $F_{f,n,m} = (\mathcal{I}, \mathcal{F})$ where \mathcal{I} is the set of inclusion functions, \mathcal{F} is a choice out of r supported features

If ${\mathcal I}$ and ${\mathcal F}$ are defined appropriately, e.g., probabilistic arithmetics can be used!

Introduction	Simplification	Results	Conclusion
0000	000000	00000	00

Parameter Identification

The best obtained parameter sets for M1 and M2 $\,$

Model	M1 (F1.a&F2.a)	M2 (F1.b&F2.a)
с	$4.53503 \cdot 10^{6}$	$3.38579 \cdot 10^4$
$\alpha_i = \alpha_j = \alpha_k$	$1.49548 \cdot 10^{-3}$	$3.60235 \cdot 10^{-5}$
$c_{N_{2},0}$	$1.96452 \cdot 10^{6}$	$5.52725 \cdot 10^{6}$
$c_{N_2,1}$	-	-11221.8
$c_{CG,0}$	$1.52826 \cdot 10^{7}$	$-8.88817 \cdot 10^4$
$c_{CG,1}$	-	483.868
e	3.5K	0.5K

University of Technology, Business and Design Wismar

Introduction	Simplification	Results	Conclusion
0000	000000	000000	00
Comparison			

Difference btw. measured and simulated temperatures in K

Temperature modeled by M1 and M2 (F2.a)

M2 seems to be even better than the normal model!

E. Auer

University of Technology, Business and Design Wismar

Introduction	Simplification	Results	Conclusion
0000	000000	000000	00
Sensitivity			

Sensitivities are obtained easily in UNIVERMEC by algorithmic differentiation

 $\left|\frac{\partial\Phi}{\partial c}\right|$ $\left|\frac{\partial\Phi}{\partial\alpha_{i}}\right|$ $\left|\frac{\partial\Phi}{\partial c_{N_{2},0}}\right|$ $\left|\frac{\partial\Phi}{\partial c_{N_{2},0}}\right|$ Φ $\partial c_{CG,1}$ $3.81 \cdot 10^{10}$ $2.94 \cdot 10^{1}$ $4.96 \cdot 10^{-2}$ $2.64 \cdot 10^{1}$ 1.47 $1.26 \cdot 10^{2}$ F1.a, M2 F1.b, M2 $4.77 \cdot 10^{-3}$ $6.88 \cdot 10^5$ $5.36 \cdot 10^{-5}$ $2.21 \cdot 10^{-2}$ $1.30 \cdot 10^{-3}$ $5.25 \cdot 10^{-1}$ F1.a, M1 $3.09 \cdot 10^{-1}$ $2.45 \cdot 10^8$ $8.49 \cdot 10^{-2}$ - $1.36 \cdot 10^{-1}$ F1.b, M1 $3.09 \cdot 10^{-1}$ $2.45 \cdot 10^{8}$ $8.49 \cdot 10^{-2}$ $1.36 \cdot 10^{-1}$

 \rightarrow Both models are most sensitive to α_i , α_j , α_k

ightarrow For M1, almost no difference in sensitivity between F1.a and F1.b

ightarrow For M2, F1.b is up to 10^5 less sensitive

Line and a feet			
0000	Simplification	00000	00
and the second sec	C1 11C 11		C 1 1

Uncertainty

Fact: We were intereseted in $c_{gas}(\theta) = c_{0,gas}(+c_{1,gas} \cdot \theta)$ Consider uncertainty in $c_{N_2,0}$ and $c_{CG,0}$

E. Auer

University of Technology, Business and Design Wismar

Introduction	Simplification	Results	Conclusion
0000	000000	000000	●0
Conclusion			

What did we do?

- \rightarrow Simplified models for SOFC temperature wrt. heat capacity of gases with analytical solutions considered
- ightarrow Parameter sets with $e_{M1}=3.5$ K and $e_{M2}=0.5$ K identified

 \rightarrow Models analysed wrt. to their areas of validity (F1.ab / F2.abc) What did we gain?

- M1: F1.a-b are equivalent; good for short time intervals; fast
- M2: Very good correspondence with measured data; F1.a structurally complex (but fast)
- \rightarrow $\,$ M1,M2 are very sensitive to coefficients of heat convection
- ightarrow M1,M2 handle different magnitudes of uncertainty in $c_{gas,0}$
- ightarrow M2 with F1.a more prone to overestimation than M1

What now?

Introduction	Simplification	Results	Conclusion
0000	000000	000000	⊙●
Outlook			

Goal 1: More verification (\rightsquigarrow consider F1.c)

Goal 2: Less overestimation (→ subdivide uncertainty regions) Possible solution: Use the GPU to speed up computations!

Reference system:

Xeon E5-2680, 8 cores, gcc 4.7 on Linux, GeForce GTX 580, 512 cores, CUDA 4.2

Results (evaluation of $\Phi([p])$):

 $1 \times 1 \times 1$: speedup of 19

 $1\times 3\times 1:$ speedup of 30

 $3\times3\times1:$ speedup of 33

Problem: Software! Besides: Models for degradation of SOFC stacks?