Why Min-Based Conditioning

Salem Benferhat¹ and Vladik Kreinovich²

¹CRIL (Centre de Recherche en Informatique de Lens) CNRS – UMR 8188 Université d'Artois, Faculté des sciences Jean Perrin Rue Jean Souvraz, SP 18, F62307 Lens Cedex, France benferhat@cril.univ-artois.fr

> ²Department of Computer Science University of Texas at El Paso El Paso, Texas 79968, USA vladik@utep.edu

1. Need for Ordinal-Scale Possibility Degrees

- It is often useful to describe,
 - for each theoretically possible alternative ω from the set of all *theoretically* possible alternatives Ω ,
 - to what extent this alternative is, in the expert's opinion, *actually* possible.
- Often, the only information that we can extract from experts is the qualitative one:
 - which alternatives have a higher degree of possibility and
 - which have lower degree.
- In some cases, we have a linear order.
- We could use this order to process this information.
- However, computers have been designed to process numbers; they are still best in processing numbers.

2. From Ordinal Scale to Numbers

- So, degrees of possibility are usually described by numbers $\pi(\omega) \in [0, 1]$:
 - the higher the degree,
 - the larger the value $\pi(\omega)$.
- These numbers by themselves do not have an exact meaning, the only meaning is in the order.
- So, the same meaning can be described if we apply any strictly increasing transformation to [0, 1].
- Usually, some of this freedom is eliminated by the convention that the largest degree is set to 1.
- We can always achieve this with an appropriate transformation (*normalization*).
- **Definition.** Let Ω be a finite set. A possibility distribution is a function $\pi : \Omega \to [0, 1]$ s.t. $\max_{\omega \in \Omega} \pi(\omega) = 1$.

- 3. Need for Conditioning and Normalization
 - Often, we acquire an additional information:
 - some of the alternatives that we originally thought to be possible
 - are actually not possible: $\Psi \subset \Omega, \ \Psi \neq \Omega$.
 - *Example:* some original suspects have alibis.
 - We have $\pi'(\omega) = 0$ for all $\omega \notin \Psi$; but we may have $\max_{\omega \in \Psi} \pi'(\omega) < 1$, so we need normalization.
 - Definition. By a conditioning operator, we mean a mapping (π | Ψ) that:
 - inputs a possibility distribution π on a set Ω and a non-empty set $\Psi \subseteq \Omega$, and
 - returns a new possibility distribution for which $(\pi | \Psi)(\omega) = 0$ for all $\omega \notin \Psi$.
 - What are the reasonable conditioning operators?

4. Reasonable Properties

- A first reasonable requirement is that:
 - since alternatives $\omega \not\in \Psi$ are excluded,
 - their original possibility degrees should not affect the resulting degrees.
- C1. If $\pi_{|\Psi} = \pi'_{|\Psi}$, i.e., if $\pi(\omega) = \pi'(\omega)$ for all $\omega \in \Psi$, then $(\pi | \Psi) = (\pi' | \Psi)$.
- Another reasonable condition is that:
 - while the numerical values of possibility degrees may change,
 - the order between these degrees should not change.
- C2. If $\pi(\omega) < \pi(\omega')$ for some $\omega, \omega' \in \Psi$, then $(\pi | \Psi)(\omega) < (\pi | \Psi)(\omega')$.
- C3. If $\pi(\omega) = \pi(\omega')$ for some $\omega, \omega' \in \Psi$, then $(\pi | \Psi)(\omega) = (\pi | \Psi)(\omega').$

5. Reasonable Properties (cont-d)

- Often, after learning Ψ ⊂ Ω, we learn additional information Ψ' ⊂ Ψ. In this case:
 - first compute $\pi' = (\pi \mid \Psi)$, and then
 - compute $\pi'' = (\pi' | \Psi') = ((\pi | \Psi) | \Psi').$
- Alternative, we could learn both pieces of the information at the same time, and get $(\pi \mid \Psi')$.
- In both cases, we gain the exact same new information.
- So, the resulting changes in possibility degrees should be the same:
- C4. If $\Psi' \subset \Psi$, then $((\pi \mid \Psi) \mid \Psi') = (\pi \mid \Psi')$.

6. Reasonable Properties (cont-d)

- Another condition is that if had an alternative ω_0 which we originally believed to be impossible, then:
 - this alternative should remain impossible, and
 - the possibility degrees of all other alternatives $\omega \neq \omega_0$ should remain the same.
- C5. If $\pi(\omega_0) = 0$ for some $\omega_0 \in \Psi$, then $(\pi \mid \Psi)(\omega_0) = 0$ and $(\pi_{|\Psi - \{\omega_0\}} \mid \Psi) = (\pi \mid \Psi)_{|\Psi - \{\omega_0\}}$.

7. Final Property: Invariance

- What matters is the order between the degrees, not the numerical values of the degrees.
- So, the situations should not change if we apply a rescaling T that doesn't change the order (e.g., $x \to x^2$).
- The result of applying the conditioning operator not change if we apply such a re-scaling.
- We should get the exact same result:
 - if we apply conditioning $\pi \to (\pi \mid \Psi)$ in the original scale, and then re-scale to $T(\pi \mid \Psi)$;
 - or we first apply the re-scaling, resulting in $T\pi$, and then apply the conditioning, resulting in $(T\pi | \Psi)$.
- C6. For every increasing one-to-one function $T: [0,1] \rightarrow [0,1]$, we have $(T\pi \mid \Psi) = T(\pi \mid \Psi)$.

8. Main Result

• Proposition. The only conditioning operator satisfying C1–C6 is the min-based operator for which:

•
$$(\pi \mid \Psi)(\omega) = 1$$
 when $\omega \in \Omega$ and $\pi(\omega) = \max_{\omega' \in \Psi} \pi(\omega');$

•
$$(\pi \mid \Psi)(\omega) = \pi(\omega)$$
 when $\omega \in \Omega$ and $\pi(\omega) < \max_{\omega' \in \Psi} \pi(\omega')$; and

•
$$(\pi \mid \Psi)(\omega) = 0$$
 when $\omega \notin \Psi$.

• The usual derivation selects (A | B) as the maximal value s.t. d(A & B) = d((A | B) & B), with

$$d(A \& B) \stackrel{\text{def}}{=} \min(d(A), d(B)).$$

• We show that *maximality* can be replaced with *invariance* – reflecting ordinal character of degrees.

9. Proof

- It is easy to show that the min-based operator satisfies the properties C1-C6.
- To complete the proof, we need to prove that, vice versa,
 - every conditioning operator that satisfies these five properties
 - is indeed the min-based operator.
- To prove this statement, we will consider two possible cases:
 - the case when the set Ψ contains some alternative ω for which $\pi(\omega) = 1$, and
 - the case when the set Ψ does not contain any alternative ω for which $\pi(\omega) = 1$.

10. Proof: First Case

- Let us first consider the case when the set Ψ contains some alternative ω for which $\pi(\omega) = 1$.
- In this case, the min-based formula leads to $(\pi \mid \Psi)(\omega) = \pi(\omega)$ for all $\omega \in \Psi$.
- Let us show that this equality holds for all conditioning operators that satisfy the properties C1–C6.
- If there is no $\omega_0 \in \Psi$ for which $\pi(\omega_0) = 0$, let us add such an element to our set Ω .
- According to Property C5, this will not change the result.
- Thus, without losing generality, we can safely assume that there is an element $\omega_0 \in \Psi$ for which $\pi(\omega_0) = 0$.
- As for the values $\pi(\omega)$ for $\omega \notin \Psi$, we can use the property **C1** to replace them with zeros.

11. First Case (cont-d)

- Let us sort values $\psi(\omega)$ corresponding to different alternatives $\omega \in \Psi$ in increasing order.
- We know that the resulting list of values includes 0 and 1, so this list has the form

 $v_1 = 0 < v_2 < \ldots < v_{k-1} < v_k = 1.$

- Let us use property C6 to prove that the values $(\pi | \Psi)$ should also be from this list.
- Indeed, let us consider the following strictly increasing function T(v): for $v_i \leq v \leq v_{i+1}$, we take

$$T(v) = v_i + \left(\frac{v - v_i}{v_{i+1} - v_i}\right)^2 \cdot (v_{i+1} - v_i).$$

• One can easily check that for this function, $T(v_i) = v_i$ for all i, so $T(\pi) = \pi$.

12. First Case (cont-d)

- Thus, the property C6 implies that $T(\pi | \Psi) = (\pi | \Psi)$.
- So, for each value $v = (\pi | \Psi)(\omega)$, we should have T(v) = v.
- But for the above function T(v), the only such values are v_1, \ldots, v_k .
- So, indeed, the values $v_1 < \ldots < v_k$ are mapped to the same k values.
- By properties C2 and C3:
 - equal values of $\pi(\omega)$ are mapped into equal values of $(\pi \mid \Psi)(\omega)$, and
 - smaller values of $\pi(\omega)$ are mapped into smaller values of $(\pi \mid \Psi)(\omega)$.
- Thus, the values v'_i corresponding to v_i are also sorted in increasing order: $v'_1 < \ldots < v'_k$.

13. First Case (final)

- Each new value v'_i must coincide with one of the original values v_j .
- So, in the increasing list $v_1 < \ldots < v_k$ of k values, we have k new values v'_i which have the same order.
- This implies:
 - that v'_1 must be the smallest of v_i , i.e., $v'_1 = v_1$,
 - that v'_2 be the second smallest, i.e., $v'_2 = v_2$, and,
 - in general, $v'_i = v_i$.
- So, indeed, $(\pi \mid \Psi)(\omega) = \pi(\omega)$ for all $\omega \in \Psi$.

Need for Ordinal-Scale					
From Ordinal Scale to					
Need for Conditioning					
Reasonable Properties					
Reasonable Properties					
Reasonable Properties					
Final Property: Invariance					
Main Result					
Proof					
	Home Page				
	Title Page				
	44	••			
	•	►			
	Page 14 of 20				
	Go Back				
	Full Screen				
	Close				
	Quit				

14. Proof: Second Case

- Let us now consider the case when the set Ψ does not contain some alternative ω for which $\pi(\omega) = 1$.
- In this case, we can also:
 - add (if needed) an element ω_0 for which $\pi(\omega_0) = 0$, and
 - sort the values $\pi(\omega)$ corresponding to $\omega \in \Psi$ into an increasing sequence $v_1 = 0 < v_2 < \ldots < v_k < 1$.
- The only difference is that in this case, the largest value v_k in this increasing sequence is smaller than 1.
- One of the new values should be equal to 1.
- So, due to Properties C2 and C3, only the largest degree v_k should be mapped into 1.

Need for Ordinal-Scale					
From Ordinal Scale to					
Need for Conditioning					
Re	asonable	Properties			
Re	asonable	Properties .			
Re	asonable	Properties .			
Final Property: Invariance					
Main Result					
Proof					
	Home Page				
	Title Page				
	44	••			
	•				
	Page 15 of 20				
	Go Back				
	Full Screen				
	Close				
	0				
	Quit				

- Similarly to the first case, we can prove:
 - that each of the values v_1, \ldots, v_{k-1} maps into one of the values v_1, \ldots, v_k , and
 - that if $v_i < v_j$, then $v'_i < v'_j$.
- By induction, we can prove that $v'_i \ge v_i$.
- Since we have only one additional value to move to, for each i, we have either $c'_i = v_i$ or $v'_i = v_{i+1}$.
- Let use the Property C4 to prove, by contradiction, that $v_i < v_k$ cannot be transformed into v_{i+1} .
- Let us assume that, vice versa, there is an element $\omega_i \in \Psi$ for which $\pi(\omega_i) = v_i$ and $(\pi \mid \Omega)(\omega_i) = v_{i+1}$.

- To get a contradiction, let us consider:
 - the new set $\Omega^* = \Omega \cup \{\omega^*\}$, with a new element ω^* , and
 - a new possibility distribution π^* for which we have $v_i < \pi^*(\omega^*) < v_{i+1}$ and $\pi^*(\omega) = \pi(\omega)$ for all $\omega \neq \omega_i$.
- Let us consider two conditioning paths from Ω^* to Ψ :
 - in the first path, we go from Ω^* to Ω and then from Ω to Ψ ;
 - in the second path, we go from Ω^* to $\Psi^* \stackrel{\text{def}}{=} \Psi \cup \{\omega^*\}$ and then from Ψ^* to Ψ .
- According to the Property C4, the resulting value $(\pi^* | \Psi)(\omega_i)$ should be the same for both paths.
- In the first path, first, we go from Ω^* to Ω .

- The transition from Ω^* to Ω eliminates a single element ω^* for which $\pi^*(\omega^*) < 1$.
- Thus, according to the first case, possibility degrees of remaining elements remain unchanged: $(\pi^* | \Omega) = \pi$.
- We already know that $(\pi | \Psi)(\omega_i) = v_{i+1}$.
- Thus, due to Property C4, we have

 $(\pi^* \,|\, \Psi)(\omega_i) = ((\pi^* \,|\, \Omega) \,|\, \Psi)(\omega_i) = v_{i+1}.$

- On the other hand, in the second path, we first move from Ω^* to Ψ^* .
- In this transition, we have v_k transformed into 1, and the original value $\pi^*(\omega_i) = v_i$:
 - can either remain the same,
 - or it can be transformed to the next value which is now $\pi^*(\omega^*) < v_{i+1}$.

- In both cases, the new possibility degree is smaller than v_{i+1} : $\pi(\omega_i) < v_{i+1}$.
- When we then reduce Ψ^* to Ψ , then:
 - all alternatives for which originally $\pi^*(\omega) = \pi(\omega) = v_k$ and now $\pi'(\omega) = 1$
 - remain in the set.
- Thus, all other alternatives including the alternative ω_i according to first case, retain their values.
- For ω_i , this implies that $(\pi' | \Psi)(\omega_i) = \pi'(\omega_i) < v_{i+1}$.
- Thus, we have $(\pi^* | \Psi)(\omega_i) = \pi'(\omega_i) < v_{i+1}$.
- This contradicts to $(\pi^* | \Psi)(\omega_i) = v_{i+1}$.
- This contradiction shows that the transformation from v_i to v_{i+1} is indeed impossible. So, $v'_i = v_i$. Q.E.D.

19. Acknowledgements

- This work was supported in part by the US National Science Foundation grants:
 - HRD-0734825,
 - HRD-1242122, and
 - DUE-0926721.
- This work was performed when Salem Benferhat was visiting El Paso.

