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1.

Need for Ordinal-Scale Possibility Degrees

e It is often useful to describe,

— for each theoretically possible alternative w from
the set of all theoretically possible alternatives (2,
— to what extent this alternative is, in the expert’s

opinion, actually possible.

e Often, the only information that we can extract from
experts is the qualitative one:

— which alternatives have a higher degree of possibil-
ity and
— which have lower degree.
e In some cases, we have a linear order.

e We could use this order to process this information.

e However, computers have been designed to process
numbers; they are still best in processing numbers.

Need for Ordinal-Scale.. . .




2.

From Ordinal Scale to Numbers

e So, degrees of possibility are usually described by num-
bers m(w) € [0, 1]:
— the higher the degree,
— the larger the value 7(w).

e These numbers by themselves do not have an exact
meaning, the only meaning is in the order.

e So, the same meaning can be described if we apply any
strictly increasing transformation to [0, 1].

e Usually, some of this freedom is eliminated by the con-
vention that the largest degree is set to 1.

e We can always achieve this with an appropriate trans-
formation (normalization).

e Definition. Let Q) be a finite set. A possibility distri-

bution is a function m: Q — [0,1] s.t. max m(w) = 1.
we

From Ordinal Scale to. ..




3. Need for Conditioning and Normalization

Need for Conditioning . . .

e Often, we acquire an additional information:

— some of the alternatives that we originally thought
to be possible

— are actually not possible: & C Q, ¥ # €.
e Frample: some original suspects have alibis.

e We have 7'(w) = 0 for all w ¢ ¥; but we may have

max 7'(w) < 1, so we need normalization.
we

e Definition. By a conditioning operator, we mean a
mapping (7| V) that:
— inputs a possibility distribution ™ on a set Q and a
non-empty set W C Q, and
— returns a new possibility distribution for which
(m|¥)(w) =0 for allw & V.

e What are the reasonable conditioning operators?




4.

Reasonable Properties

e A first reasonable requirement is that:

— since alternatives w € ¥ are excluded,
— their original possibility degrees should not affect
the resulting degrees.
o Cl. If my = 7y, Le, if 7(w) = 7'(w) for all w € ¥,
then (w | W) = (7' | V).
e Another reasonable condition is that:
— while the numerical values of possibility degrees
may change,
— the order between these degrees should not change.
e C2. If m(w) < 7w(w) for some w,w’ € WV, then
(m [ W)(w) < (7] ¥) ().

e C3. If mw) = 7w(w) for some w,w’ € WV, then
(m | ¥)(w) = ([ ¥)(w).

Reasonable Properties




5. Reasonable Properties (cont-d)

e Often, after learning ¥ C (), we learn additional infor-
ma,ti()n \Ij, C \I], In thiS case: Reasonable Properties. ..

— first compute 7’ = (7| V), and then
— compute " = (7' | V') = ((7 | V) | V).

e Alternative, we could learn both pieces of the informa-
tion at the same time, and get (7| '),

e In both cases, we gain the exact same new information.

e So, the resulting changes in possibility degrees should
be the same:

o C4. If U C U, then ((r|0) | V') = (x| ¥).




6. Reasonable Properties (cont-d)

e Another condition is that if had an alternative wy which
we originally believed to be impossible, then:

Reasonable Properties. . .

— this alternative should remain impossible, and
— the possibility degrees of all other alternatives w #
wp should remain the same.
e C5. If m(wp) = 0 for some wy € ¥, then (7| ¥)(wy) =0
and (Mg —{uwy} [ W) = (7 | U)jw—{wp}-




7.

Final Property: Invariance

e What matters is the order between the degrees, not the
numerical values of the degrees.

e So, the situations should not change if we apply a re-
scaling T' that doesn’t change the order (e.g., x — x?).

e The result of applying the conditioning operator not
change if we apply such a re-scaling.

e We should get the exact same result:

— if we apply conditioning 7 — (7 | V) in the original
scale, and then re-scale to T'(w | ¥);

— or we first apply the re-scaling, resulting in 77, and
then apply the conditioning, resulting in (7'7 | V).

e C6. For every increasing one-to-one function
T:10,1] — [0,1], we have (T | V) =T (7 | V).

Final Property: Invariance
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8.

Main Result

e Proposition. The only conditioning operator satisfying
C1-C6 is the min-based operator for which:

o (m|V)(w) =1 when w € Q and 7(w) = max (W),

w'ew
o (m|V)(w) =mr(w) when w €  and

Ay
m(w) < g/lg%cﬂ(w ); and

o (m|V)(w)=0 whenw & V.

e The usual derivation selects (A|B) as the maximal
value s.t. d(A& B) = d((A| B) & B), with

d(A& B) & min(d(A), d(B)).

e We show that mazimality can be replaced with invari-
ance — reflecting ordinal character of degrees.

Main Result
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9. Proof

e It is easy to show that the min-based operator satisfies
the properties C1-C6.

e To complete the proof, we need to prove that, vice
versa,

— every conditioning operator that satisfies these five
properties
— is indeed the min-based operator.

e To prove this statement, we will consider two possible
cases:

— the case when the set W contains some alternative
w for which 7(w) =1, and

— the case when the set ¥ does not contain any al-
ternative w for which m(w) = 1.




10. Proof: First Case

e Let us first consider the case when the set W contains
some alternative w for which 7(w) = 1.

e In this case, the min-based formula leads to
(7| ¥)(w) = 7(w) for all w € V.

e Let us show that this equality holds for all conditioning
operators that satisfy the properties C1-C6.

o If there is no wy € ¥ for which 7(wy) = 0, let us add
such an element to our set (2.

e According to Property C5, this will not change the
result.

e Thus, without losing generality, we can safely assume
that there is an element wy € ¥ for which 7(wy) = 0.

e As for the values 7(w) for w ¢ ¥, we can use the prop-
erty C1 to replace them with zeros.




11. First Case (cont-d)

e Let us sort values ¢(w) corresponding to different al-
ternatives w € ¥ in increasing order.

e We know that the resulting list of values includes 0
and 1, so this list has the form

v =0<v<...<vp_1 <vp=1.

e Let us use property C6 to prove that the values (7| W)
should also be from this list.

e Indeed, let us consider the following strictly increasing
function T'(v): for v; < v < w41, we take

vV —Y;

T(v) =wv; + ( )2 (Vi1 — vy).

Viv1 — Y

e One can easily check that for this function, T'(v;) = v;
for all 4, so T'(7) = 7.




12. First Case (cont-d)

e Thus, the property C6 implies that T'(7w | V) = (7| V).

e So, for each value v = (7|¥)(w), we should have
T(v) = .

e But for the above function 7'(v), the only such values
are vy, ..., V.

e So, indeed, the values v; < ... < v, are mapped to the
same k values.

e By properties C2 and C3:

— equal values of m(w) are mapped into equal values
of (m|¥)(w), and
— smaller values of m(w) are mapped into smaller val-
ues of (7| ¥)(w).
e Thus, the values v} corresponding to v; are also sorted
in increasing order: v} < ... < v.




13. First Case (final)

e Fach new value v must coincide with one of the origi-
nal values v;.

e So, in the increasing list v < ... < v of k values, we
have k new values v} which have the same order.

e This implies:
— that v] must be the smallest of v;, i.e., v] = vy,

— that v} be the second smallest, i.e., v) = vy, and,

— in general, v} = v;.

e So, indeed, (7| ¥)(w) = 7(w) for all w € V.




14. Proof: Second Case
e [et us now consider the case when the set ¥ does not
contain some alternative w for which w(w) = 1.
e In this case, we can also:

— add (if needed) an element wy for which m(wgy) = 0,
and

— sort the values 7(w) corresponding to w € ¥ into
an increasing sequence v; =0 < vy < ... < v < 1.

e The only difference is that in this case, the largest value
vk in this increasing sequence is smaller than 1.

e One of the new values should be equal to 1.

e So, due to Properties C2 and C3, only the largest
degree v should be mapped into 1.




15. Second Case (cont-d)

e Similarly to the first case, we can prove:

— that each of the the values vy, ..., vx_1 maps into
one of the values vy, ..., v;, and

— that if v; < vy, then v} < vj.
e By induction, we can prove that v} > v;.

e Since we have only one additional value to move to, for
each i, we have either ¢, = v; or v, = v;11.

e Let use the Property C4 to prove, by contradiction,
that v; < v cannot be transformed into v;,1.

e Let us assume that, vice versa, there is an element
w; € ¥ for which 7m(w;) = v; and (7| Q)(w;) = vi41.




16. Second Case (cont-d)

e To get a contradiction, let us consider:

— the new set Q" = QU {w*}, with a new element w*,
and

— a new possibility distribution 7* for which we have
v; < 7 (w*) < v and 7 (w) = 7(w) for all w # w;.

e Let us consider two conditionining paths from Q* to W:

— in the first path, we go from Q* to €2 and then from
Q to U;
def

— in the second path, we go from Q* to ¥* = WU{w*}
and then from ¥* to W.

e According to the Property C4, the resulting value
(7* | ¥)(w;) should be the same for both paths.

e In the first path, first, we go from Q2* to €.




17. Second Case (cont-d)

e The transition from 2* to {2 eliminates a single element
w* for which 7*(w*) < 1.

e Thus, according to the first case, possibility degrees of
remaining elements remain unchanged: (7*|Q) = 7.

e We already know that (7| ¥)(w;) = vit1.

e Thus, due to Property C4, we have

(7 [W)(wi) = (77 | Q) [ W) (wi) = vig1.

e On the other hand, in the second path, we first move
from Q* to U*.

e In this transition, we have v; transformed into 1, and
the original value 7*(w;) = v;:
— can either remain the same,

— or it can be transformed to the next value which is
now 7 (w*) < vi41.




18. Second Case (cont-d)
e In both cases, the new possibility degree is smaller than
Vit1- 71'((,02') < Vj41-
e When we then reduce U* to ¥, then:

— all alternatives for which originally 7*(w) = 7(w) =
v and now 7'(w) =1

— remain in the set.

e Thus, all other alternatives — including the alternative
w; — according to first case, retain their values.

e For w;, this implies that (7' | ¥)(w;) = 7' (w;) < vi41.
e Thus, we have (7% | V)(w;) = 7' (w;) < vi11.
e This contradicts to (7| V) (w;) = vis1-

e This contradiction shows that the transformation from
v; to v;41 is indeed impossible. So, v} = v;. Q.E.D.
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