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MOTIVATION OF MODEL-ORDER REDUCTION (MOR)

Dynamical systems
are a principal tool in modeling and control of many physical
phenomena:

Figure: heat transfer, signal propagation, wave propagation, and mems systems

{need for accuracy → more details in the modeling} → larger dynamical systems

larger dynamical systems → unmanageably large demands

on computational resources
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MODEL-ORDER REDUCTION

Given the function
F : Rn → Rn

a nonlinear system of equations consists in finding x such that:

F(x) = 0

MOR is typically performed on the premise that the solution x belongs to an affine
subspace, W, of Rn whose dimension k is orders of magnitude smaller than n, i.e.

x = z +Φp

where Φ is a basis of a subspace of Rn associated to W
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NONLINEAR SYSTEM OF EQUATIONS. EXAMPLE
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F : Rn → Rn

F(X) = 0

2x21 + x22 − x3 = 0

x1 − x2 = 0

10x21 − x3 − 4 = 0
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ILLUSTRATION OF MODEL-ORDER REDUCTION

F : Rn → Rn

F(X) = 0

F(Φp + z) = 0

Assuming
z ≈ 0

we have to solve:
F(Φp) = 0
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MODEL-ORDER REDUCTION. BASICS

▶ The goal of Model Order Reduction (MOR) is to:
▶ Reduce complexity
▶ Maintain (input-output) accuracy
▶ Maintain relevant physical properties

▶ A good Reduction methodology must be:
▶ Accurate, efficient, numerically robust, and generate useful

models

▶ MOR can be applied in many different settings: e.g.,
▶ Linear Systems
▶ Parametric Systems
▶ Non-Linear Systems
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MODEL-ORDER REDUCTION TECHNIQUES

There are several techniques of MOR, but all of them have the same goal: finding a
basis Φ. For example:

1. Krylov method: Φ = Kk(A, b) = {b, Ab ,A2b, · · · , Ak−1b}

2. Wavelets method: Let W =

(
L

H

)
a discrete wavelet: Φ = LT
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3. Proper Orthogonal Decomposition (POD): Based on Principal Component
Analysis (PCA), which is a procedure for identifying a smaller number of
uncorrelated variables, called “principal components”, from a large set of data.
The goal of PCA is to describe the maximum amount of variance with the fewest
number of principal components.
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ILLUSTRATION OF THE POD METHOD

Given the parametric nonlinear system of equations

R(x, λ) = 0

Solve R(x, λ) x(λ)

input

λ

output
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ILLUSTRATION OF THE POD METHOD: SNAPSHOTS

Collect snapshots, i.e.

1. Solve R(x, λ) = 0 for different λ values (input)
2. Save the snapshots, i.e. the solution x(λ).
3. Organize them in a “snapshots” matrix
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ILLUSTRATION OF THE POD METHOD: FINDING Φ

Find basis Φ

1. Compute the Singular Value Decomposition (SVD) of the snapshots matrix

[U, S, V] = svd(snapshots)

2. Take Φ = U(:, [1 : k]), that is, take the first k columns of U such that:

k∑
i=1

S(i)

n∑
i=1

S(i)

> ε
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USING Φ TO REDUCE THE PROBLEM

For a fixed λ, we solve
F(x) = R(x, λ) = 0

For Full-Order Model, we use:

Newton's method
▶ Set i = 0

▶ Guess an approximation of the
solution u0

▶ Repeat
▶ Compute J(ui), Jacobian

of F, and F(ui)
▶ Solve the linear system

J(ui)∆u = −F(ui)
▶ Set ui+1 = ui + ∆u
▶ Set i = i + 1

▶ Until convergence

For Reduced-Order Model, we use:

Reduced Newton's method
▶ Set i = 0

▶ Guess an approximation of the
solution p0

▶ Repeat
▶ Compute J(Φpi) and

F(Φpi)
▶ Solve the linear system

J(Φpi)ϕ∆p = −F(Φpi)
▶ Set pi+1 = pi + ∆p
▶ Set i = i + 1

▶ Until convergence
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DISADVANTAGES OF POD

Although POD is one of the most popular approaches to MOR, it presents several
disadvantages:

1. POD requires a series of offline computations in order to form the matrix of
snapshots.

2. The quality of the resulting reduced basis heavily depends on the choice of
parameters and inputs.

3. The accuracy of these over which the snapshots are computed is an issue.

In this work, we propose an Interval version of POD.
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COMPUTATIONS WITH INTERVALS

In this work, when mentioning intervals, we actually mean closed real-value-bounded
intervals, so an interval X is defined:

X = [X, X] = {x ∈ R : X ≤ x ≤ X}

We are going to manipulate intervals, for instance:

▶ Addition: X + Y = [X + Y, X + Y]

▶ Substraction: X − Y = [X − Y, X − Y]

▶ Multiplication: X · Y = {min S,max S}, where S = {X · Y, X · Y, X · Y, X · Y}
▶ Division: X/Y = {min S,max S}, where S = {X/Y, X/Y, X/Y, X/Y}, if 0 /∈ Y

In general:
X♢Y = □{x♢y, where x ∈ X and y ∈ Y}

where ♢ stands for any arithmetic operator, including division where 0 ∈ Y, and □ is the
hull operator.
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HOW TO SOLVE NONLINEAR EQUATIONS WITH INTERVALS?

Branch-and-Bound
It is the underlying principle of search in
interval constraint solving techniques,
and allows to guarantee completeness
of the search.

box 2

box 3

box 1 (initial box)

bisection

Figure taken from Laurent Granvilliers,

RealPaver User’s Manual.

Algorithm
Input: System of constraints C = {c1, . . . , ck},
a search space D0.
Output: A set Sol of interval solutions
Set Sol to empty
If ∀i, 0 ∈ Fi(D0) then:

Store D0 in some storage S

While (S is not empty) do:
Take D out of S
If (∀i, 0 ∈ Fi(D)) then:

If (D is still too large) then:
Split D in D1 and D2

Store D1 and D2 in S

Else:
Store D in Sol

Return Sol
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EXAMPLE OF BRANCH AND BOUND

Let us suppose we want to solve the nonlinear system of equations:

 (2y)2 − x2 = 1

y2 + x2 = 1
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INTERVAL ARITHMETIC + POD

Let us recall the problem we are solving

R(x, λ) = 0, λ ∈ I

POD method
R(x, λ1) = 0,

R(x, λ2) = 0,

...
...

R(x, λn) = 0,

where λi ∈ I, for i = 1, 2, . . . , n

What do we propose?
we propose an interval version of
POD
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INTERVAL POD (I-POD)

Let us recall the problem we are solving

R(x, λ) = 0, λ ∈ I

POD method
R(x, λ1) = 0,

R(x, λ2) = 0,

...
...

R(x, λn) = 0,

where λi ∈ I, for i = 1, 2, . . . , n

I-POD method
we propose an interval version of
POD

R(x, I) = 0
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NUMERICAL RESULTS

Consider the Burgers’ equation:

∂U(x, t)

∂t
+

∂f(U(x, t))

∂x
= g(x), (1)

where U is the unknown conserved quantity (mass, density, heat etc.), f(U) = 0.5U2

and in this example, g(x) = 0.02 exp(0.02x). The initial and boundary conditions used
with the above PDE are: U(x; 0) ≡ 1; U(0; t) = λ, for all x ∈ [0; 100], and t > 0.

POD method
We solve the Burgers’ equation for
λi ∈ [3.5, 4.5]
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NUMERICAL RESULTS

Method Tag 1 Tag 2 Tag 3 Tag 4
POD 300 secs 37 0.75 secs 4.85E− 4

I-POD 94.45 36 0.75 secs 5.76E− 4

Tag 1: Time computing the Reduced basis
Tag 2: Dimension of the Subspace
Tag 3: Time solving Burgers’ equation using the obtained basis
Tag 4: ||ufom − urom||/||ufom||
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ADVANTAGES AND LIMITATIONS OF IPOD

The major two advantages of our proposed method are:

▶ the computational time it requires to obtain the snapshots: Our approach
requires less time than the original one and the quality of the snapshots our
method generates is comparable to that generated by POD; and

▶ the ability to handle uncertainty: the interval that contains λ, handled at once by
IPOD, is similar to uncertainty and is handled without problems.

The major limitation of IPOD is that exaggerates the overestimation when the dynamic

system is highly nonlinear.
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CONCLUSIONS AND FUTURE WORK

Conclusions:

1. We proposed and described a novel Model-Order Reduction approach that
improves the well-known Proper Orthogonal Decomposition method (POD) by
using Interval analysis and Interval Constraint Solving Techniques.

2. We observed and reported promising performance of IPOD, when compared to
POD.

Future Work

1. We do plan to challenge IPOD on problems whose solution is highly nonlinear,
e.g., the Fitz-Hugh-Nagumo (FHN) problem.

2. We need to assess its relevance in handling and meaningfully solving problems
with other sources of uncertainty; e.g., uncertainty in the initial condition.

3. When having to handle uncertainty, achieving a relevant reduced basis is not all
that needs to be modified from traditional approaches: once the space reduced,
solving techniques (currently, namely, Newton-based methods) need to be
extended to intervals.

22



ACKNOWLEDGMENT

This work was supported by Stanford’s Army High-Performance
Computing Research Center funded by the army Research
Lab, and by the National Science Foundation award #0953339

23


	anm0: 
	0.EndLeft: 
	0.StepLeft: 
	0.PauseLeft: 
	0.PlayLeft: 
	0.PlayPauseLeft: 
	0.PauseRight: 
	0.PlayRight: 
	0.PlayPauseRight: 
	0.StepRight: 
	0.EndRight: 
	0.Minus: 
	0.Reset: 
	0.Plus: 
	anm1: 
	1.EndLeft: 
	1.StepLeft: 
	1.PauseLeft: 
	1.PlayLeft: 
	1.PlayPauseLeft: 
	1.PauseRight: 
	1.PlayRight: 
	1.PlayPauseRight: 
	1.StepRight: 
	1.EndRight: 
	1.Minus: 
	1.Reset: 
	1.Plus: 


