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Motivation 
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• Reducing uncertainties in input parameters 

• Investigation of uncertainties in structural reliability analysis 
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Deterministic parameter identification  

 Fitting the model response to experimental data  

– The most common approach of parameter estimation 

– Parameter optimisation (ill-posed problem) – robust optimisation algorithms 
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Probabilistic parameter identification 

 Quantification of epistemic uncertainties 

– Epistemic (reducible, subjective) uncertainty about deterministic values 

– Bayesian approach combining all available information 

– Well-posed identification problem 
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 Setting of Bayesian approach 
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Bayesian inference 
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Model response 

Often a black-box function 

Expensive to evaluate 

Measurement error 

Usually Ů ~ N(0,Σ) 

– model parameters to be identified 

E. Janouchová et al. |  Bayesian calibration of lattice discrete particle model for concrete 



6/18 

Bayesian inference 

 Methods of computing Bayesian posterior 

 

 

 

 

 

– Markov chain Monte Carlo 

– Kalman filter 

– Optimal maps 

Likelihood p(z |x )  

Prior p(x )  

Posterior p(x |z )  

E. Janouchová et al. |  Bayesian calibration of lattice discrete particle model for concrete 



 Features of the method 

– Sampling procedure based on model simulations, suitable for nonlinear models 

– Markov chain of required stationary distribution equal to the posterior 

– Different algorithms: 

• Gibbs sampler 

• Metropolis-Hasting algorithm 

• Metropolis algorithm 

 

 Disadvantages 

– Low convergence of the method           appropriate setting of the algorithm: 

• Proposal distribution 

• Starting point / burn-in period 

– High computational effort         Model approximation:  

• Neural network, radial basis function, kriging, polynomial chaos expansion 
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Markov Chain Monte Carlo (MCMC) 
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 Approximation of a model response 

 

– Respect to probability distribution of random variables 

→ Hermite polynomials – Gaussian, Legendre polynomials – Uniform 

– Methods for construction of PCE-based approximation 

→ Linear regression, stochastic Galerkin method, stochastic collocation 

method 

– Efficient evaluation of statistical moments, Jacobian and Sobol’ sensitivity indices 

 

 

 

Polynomial chaos expansion (PCE) 
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Calibrated material model 
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 Lattice discrete particle model for concrete 

– A priori volume discretization is performed taking into account material 

heterogeneity (coarse aggregate pieces) 

– Parameters governing the generation of concrete meso-structure 

 

 

 

 

 

 

 

– Randomly generated concrete granulometric distribution 

acts as a noise in the model response 

[Cusatis, 2011] 



 Parameters to be identified and their prior distribution  

 

 

 

 

Bayesian model calibration 
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Bayesian model calibration 
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 Experimental data 

– Uniaxial compression test 

• 3 repetitions 

• Nominal stress discretised into 250 strain steps 

 

– Notched three-point-bending test 

• 4 repetitions 

• Nominal stress discretised into 250 strain steps 

                                                                

• Elastic stiffness K 

 

d 

h 



Bayesian model calibration 
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 Bayesian posterior estimate 

– Uniform prior distribution 

– Normal distribution of experimental errors 

• Compression test:  

• Three-point bending test:     , 

– MCMC sampling  

• Metropolis algorithm, 500,000 samples     

– PCE-based model approximation 

• Legendre polynomials of third degree 

• Linear regression based on 200 full model simulations 

• Elimination of the noise caused by random distribution of particles 



 Identified parametersô PDF 

 

Results 
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 Comparison of model response and experimental data 

 

Results 
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Uniaxial compression test Three-point-bending test 



 Inappropriate choice of prior bounds 

 

Results 
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Uniaxial compression test Three-point-bending test 



 Sensitivity analysis 

 

Results 
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Uniaxial compression test Three-point-bending test 
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Conclusion 

 Bayesian model calibration 

– Combination of prior knowledge and noisy experimental observations 

• Estimation of unknown model parameters 

• Probabilistic description of epistemic uncertainty in deterministic values 

– MCMC ï Sampling procedure 

• Versatile, model-independent, computationally exhaustive method 

– Polynomial chaos-based approximation 

• Acceleration of identification procedure, sensitivity analysis 

– Calibration of lattice discrete particle model 

• Inaccurate approximation in the region of experimental data caused by 

inappropriate choice of prior distribution 

• Prescribtion of a new prior ranges to obtain the necessary information for 

constructing the accurate model approximation 
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