

BOKU Wien Institute of Structural Engineering Christian Doppler Laboratory LiCRoFast

BAYESIAN CALIBRATION OF LATTICE DISCRETE PARTICLE MODEL FOR CONCRETE

<u>Eliška Janouchová</u>, Anna Kučerová, Jan Sýkora,

Jan Vorel, Roman Wendner

7th International Workshop on Reliable Engineering Computing

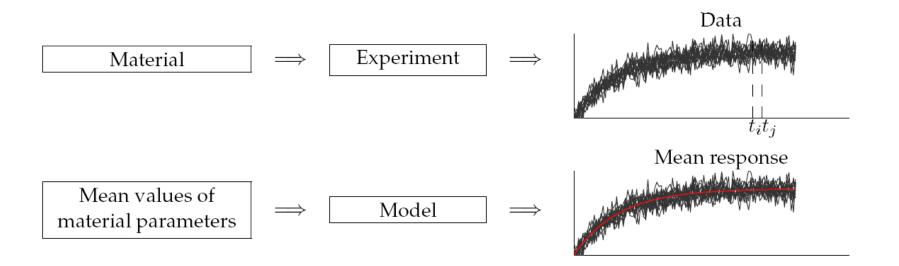
Bochum, Germany

- Reducing uncertainties in input parameters
- Investigation of uncertainties in structural reliability analysis



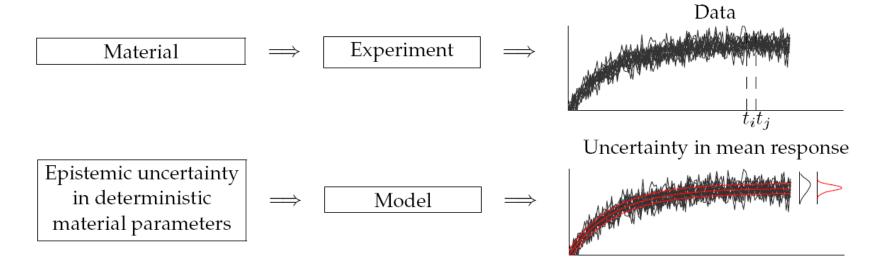
Fitting the model response to experimental data

- The most common approach of parameter estimation
- Parameter optimisation (ill-posed problem) robust optimisation algorithms

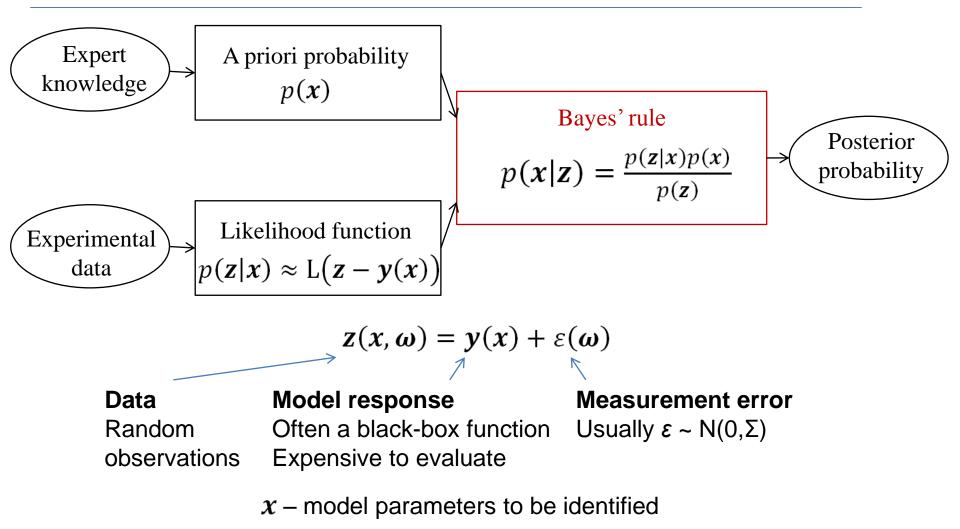


Quantification of epistemic uncertainties

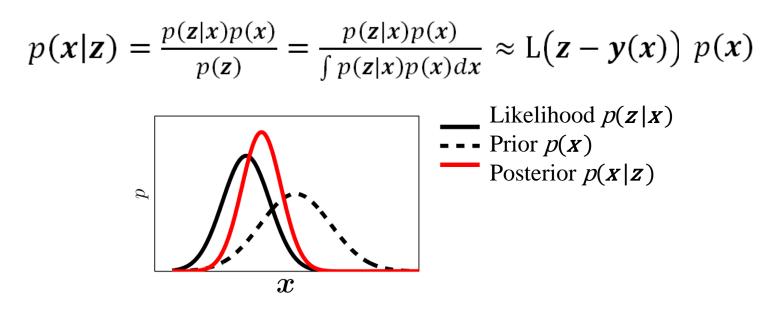
- Epistemic (reducible, subjective) uncertainty about deterministic values
- Bayesian approach combining all available information
- Well-posed identification problem



Setting of Bayesian approach



Methods of computing Bayesian posterior



- Markov chain Monte Carlo
- Kalman filter
- Optimal maps

Features of the method

- Sampling procedure based on model simulations, suitable for nonlinear models
- Markov chain of required stationary distribution equal to the posterior
- Different algorithms:
 - Gibbs sampler
 - Metropolis-Hasting algorithm
 - Metropolis algorithm

X

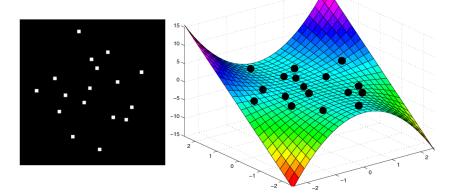
appropriate setting of the algorithm:

- Low convergence of the method
 - Proposal distribution
 - Starting point / burn-in period
- High computational effort
 Model approximation:
 - Neural network, radial basis function, kriging, polynomial chaos expansion

Approximation of a model response

$$\widetilde{PC}(\boldsymbol{x}(\boldsymbol{\xi})) = \sum_{lpha} \boldsymbol{eta}_{lpha} \psi_{lpha}(\boldsymbol{\xi})$$

- Respect to probability distribution of random variables
 - → Hermite polynomials Gaussian, Legendre polynomials Uniform
- Methods for construction of PCE-based approximation
 - → Linear regression, stochastic Galerkin method, stochastic collocation method
- Efficient evaluation of statistical moments, Jacobian and Sobol' sensitivity indices

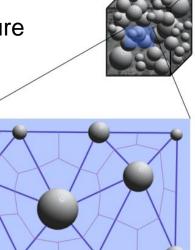


[Cusatis, 2011]

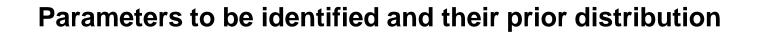
Lattice discrete particle model for concrete

- A priori volume discretization is performed taking into account material heterogeneity (coarse aggregate pieces)
- Parameters governing the generation of concrete meso-structure

material property		unit	value
minimum particle size maximum particle size	$d_0 \\ d_a$	mm mm	416
cement content	с	kg/m^3	240
water to cement ratio aggregate to cement	w/c a/c	-	$\begin{array}{c} 0.83 \\ 8.83 \end{array}$
Fuller coefficient concrete density	$n_F ho$	- kg/m ³	$\begin{array}{c} 0.5 \\ 2400 \end{array}$



- $\overbrace{$
- Randomly generated concrete granulometric distribution acts as a noise in the model response



material property		unit	value (range)
normal modulus	E_0	MPa	20000 - 70000
normai modulus	E_0	wii a	20000 - 10000
shear-normal coupling	α	-	0.2 - 0.3
tensile strength	σ_t	MPa	1.5 - 5
tensile characteristic length	l_t	mm	50 - 300
softening exponent	n_t	-	0.1 - 1
shear/strength ratio	σ_s/σ_t	-	1.5 - 8
initial friction	μ_0	-	0.001 - 0.5
compressive strength	σ_{c0}	MPa	$\sigma_{c0} = 40\sigma_t$
transitional stress	σ_{N0}	MPa	$\sigma_{N0} = 240\sigma_t$

Bayesian model calibration

Experimental data

- Uniaxial compression test
 - 3 repetitions
 - Nominal stress discretised into 250 strain steps

$$\sigma_N = \frac{F}{a^2}$$
 and $\varepsilon_N = \frac{u}{a}$

- Notched three-point-bending test
 - 4 repetitions
 - Nominal stress discretised into 250 strain steps

$$\sigma_N = \frac{3Fl}{dh^2}$$
 and $\varepsilon_N = \frac{CMOD}{h}$

• Elastic stiffness K

$$\varepsilon_N^{\text{inel}} = \varepsilon_N - \sigma_N \left(1/K \right)$$

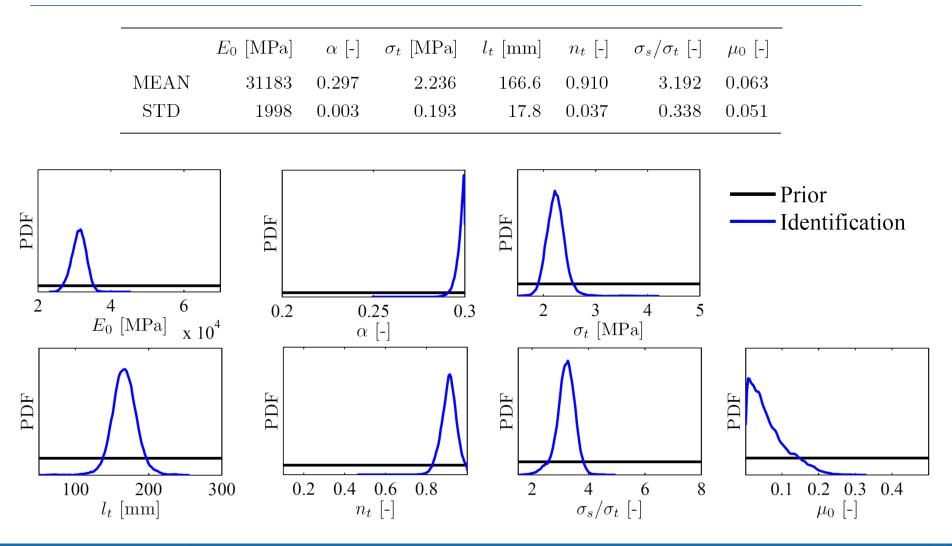
 $\leftarrow q$

h

Bayesian posterior estimate

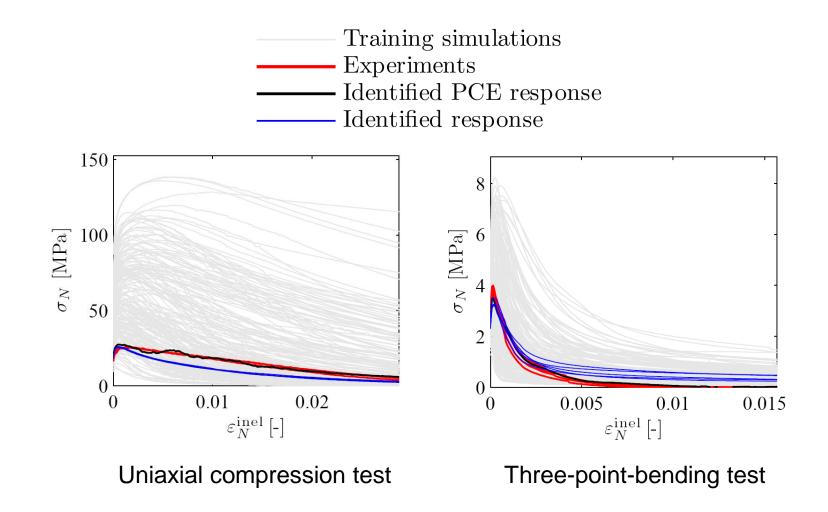
- Uniform prior distribution
- Normal distribution of experimental errors
 - Compression test: $\varepsilon_{\sigma_N} \sim N(0, 8^2)$
 - Three-point bending test: $\varepsilon_{\sigma_N} \sim N(0,2^2)$, $\varepsilon_K \sim N(0,2880^2)$
- MCMC sampling
 - Metropolis algorithm, 500,000 samples
- PCE-based model approximation
 - Legendre polynomials of third degree
 - Linear regression based on 200 full model simulations
 - Elimination of the noise caused by random distribution of particles

Identified parameters' PDF

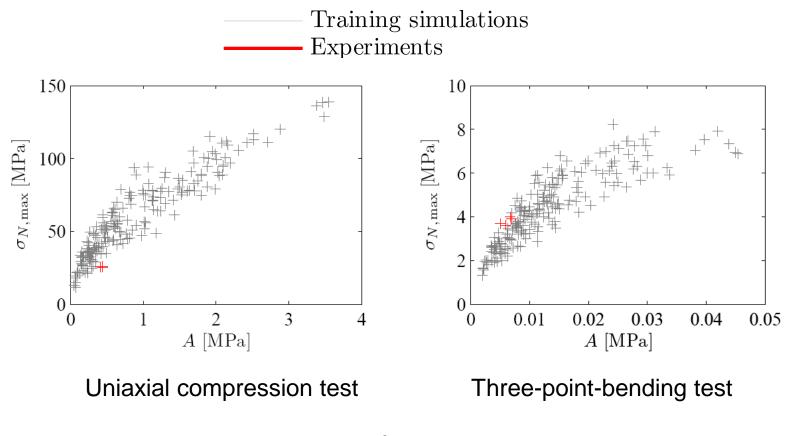


E. Janouchová et al. | Bayesian calibration of lattice discrete particle model for concrete

Comparison of model response and experimental data

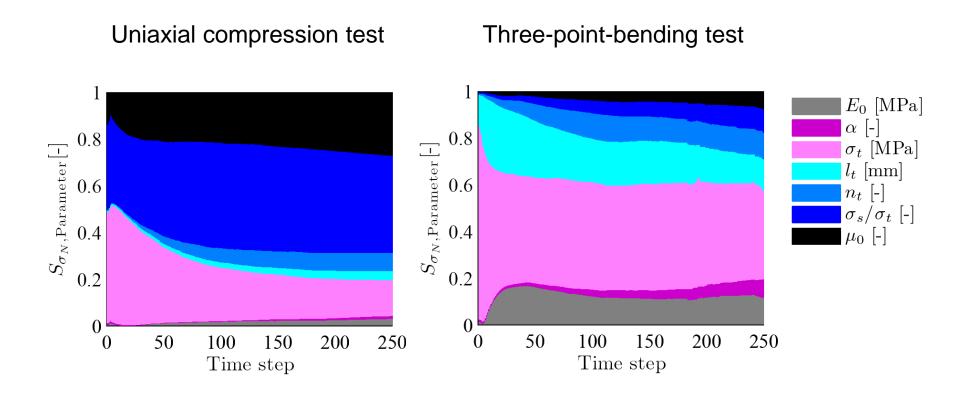


Inappropriate choice of prior bounds



 $A = \int \sigma_N \mathrm{d}\varepsilon_N$

Sensitivity analysis



Bayesian model calibration

- Combination of prior knowledge and noisy experimental observations
 - Estimation of unknown model parameters
 - Probabilistic description of epistemic uncertainty in deterministic values
- MCMC Sampling procedure
 - Versatile, model-independent, computationally exhaustive method
- Polynomial chaos-based approximation
 - Acceleration of identification procedure, sensitivity analysis
- Calibration of lattice discrete particle model
 - Inaccurate approximation in the region of experimental data caused by inappropriate choice of prior distribution
 - Prescribtion of a new prior ranges to obtain the necessary information for constructing the accurate model approximation

BOKU Wien Institute of Structural Engineering Christian Doppler Laboratory LiCRoFast

THANK YOU FOR YOUR ATTENTION.

Aknowledgements

GAČR: project No. 16-11473Y

SGS: project No. SGS16/037/OHK1/1T/11

Austrian Federal Ministry of Economy, Family and Youth

National Foundation for Research, Technology and Development

