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Computer (or physical) experiments

• Random inputs 
defined by their (joint) 
probability distribution

• optimal selection of 
representative points from 
design space
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• Outputs

characteristics of the 

resulting probability 

distribution (mean, st.

dev., …), sensitivity or the 

probability of failure of 

structure/system
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Computer (or physical) experiments
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• Target statistical parameter

• Numerical evaluation of the integral involves 
i =1,…, Nsim points associated with weights
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Computer (or physical) experiments

4

• Target statistical parameter

• Numerical evaluation of the integral involves
i =1,…, Nsim points associated with weights

• Usually all points share 
equal probability wi
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Computer (or physical) experiments
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• Target statistical parameter

• Rewrite the integral in terms of U – integrate over 

unit hypercube with uniform density:
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Computer (or physical) experiments
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• Target statistical parameter

• Consider independent uniform variables
Ui with the following copula:

• They represent probabilities

• The joint CDF reads:
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The weights for fixed points
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• Equal weights 1/Nsim ?
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The weights for fixed points
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• Equal weights 1/Nsim ?
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The weights for fixed points
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• The idea: spatial distribution of points 
can be used for selection of associated 
probability 

• Weights are obtained using (Voronoi
diagrams – a tessellation into cells) in 
the design domain (unit hypercube)

• Weights are the surfaces/volumes 
around points

• Post-processing of existing design & 
results (extract more information from
an existing bad design)
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Periodic extension of the design space
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• Vořechovský, M. and J. Eliáš. Improved formulation of Audze-Eglajs
criterion for space-filling designs.

In: Proc. of 12th International Conference on Applications of 
Statistics and Probability in Civil Engineering, ICASP12, Vancouver, 
Canada, 2015.

• Eliáš, J. and M. Vořechovský. Modication of the Audze-Eglajs criterion to 
achieve a uniform distribution of sampling points.

Advances in Engineering Software, under review.
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Audze-Eglājs (AE) criterion

• Potential energy of the system
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• Mutually closer points → higher 
contribution to the overall 
energy of the system

• Optimization (min. energy) → 
points tend to shift away from 
each other

AUDZE, P. P. – EGLĀJS, V. O. New approach for planning out of experiments. Problems 

of Dynamics and Strengths. Zinatne Publishing House, 1977, Vol 35, 104–107.
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Audze-Eglājs (AE) criterion

• Potential energy of the system
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• Does the criterion really prioritize 
uniform distribution
of sampling points in space?
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2D domain covered by AE-LHS-optimized sample

Measurement of uniformity
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3D and 4D domains covered by AE-LHS

Measurement of uniformity
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Periodic Audze-Eglājs (PAE) criterion

• Potential energy of the system

• The shortest distance
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Periodic Audze-Eglājs (PAE) criterion

• Potential energy of the system

• The shortest distance for each 
pair is considered

• Does the new criterion 
prioritize uniform distribution
of sampling points in space

• The source of uniformity lies 
in the invariance of PAE wrt to 
translation
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Measurement of uniformity
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Measurement of uniformity
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The Voronoi weights
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Clipped vs. Periodic tessellation
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• Reuse the thought
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Clipped vs. Periodic tessellation
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Clipped vs. Periodic tessellation
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• Spatial distribution (frequency) of weights

• Systematic error close to boundaries

The tessellation results in 

systematic appearance of 

underestimated regions 

near the boundaries 

followed by regions with 

over-weighted regions.
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Numerical examples
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Numerical examples
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• Three functions (frequently used transformations)

 var 2,3,5,9N 

Motivation → Periodic AE → Voronoi weights → Numerical examples → Conclusions → Future work



25

Numerical examples
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Numerical examples
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Numerical examples
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• clipped Voronoi tessellation 

(a tessellation limited to the design domain) 

inapplicable (presence of boundaries)

• periodic Voronoi tessellation slightly improves 

the integration if the location of sampling points 

is not optimized (e.g. crude MCS). 

However, the minor improvement does not seem 

to outweigh the additional effort spend on the 

evaluation of the volumes of the regions and the 

tessellation.

Conclusions
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Future work
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Weighted averages

– Grouping 

(for clustered points)

– Dummy points (unvisited regions)



Future work
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Future work
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Lorenzo Rimoldini

Weighted skewness and kurtosis unbiased by sample 

size and Gaussian uncertainties, Astronomy and 

Computing 5 (2014) 1–8

unweighted forms for central moments → sample-size bias-corrected weighted mom’s


