Static Analysis of Structural Systems with Uncertain Parameters Using Probability-Boxes

Naijia Xiao

School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA, naijia.xiao@gatech.edu

Robert L Mullen

Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC 29208, USA, rlm@sc.edu

Rafi Muhanna

School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA, rafi.muhanna@gatech.edu

The 7th International Workshop on Reliable Engineering Computing (REC2016) June 15-17, 2016, Ruhr University Bochum | Germany

Imprimers

Ted Belytschko Ivo Babushka Vladik Kreinovich Ray Moore A. Neumier Scott Ferson

So, three mathematicians go into a bar. The bartender asks "Do you ALL want beers?"

Conventional probability

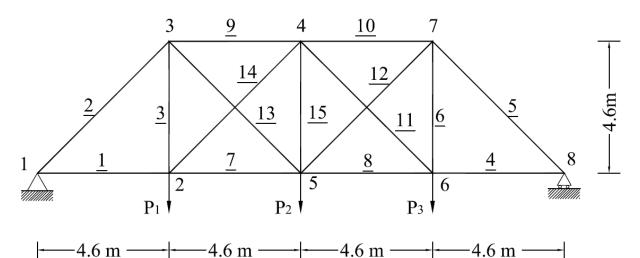
 Each person wants a beer but doesn't know about the others. Following conventional probability and uninformed prior

Each answers Probably not.

Admitting what you don't know

- First person answers: I don't know
- Second person answers: I don't know
 - Third person's only logical answer is: YES!

Motivation : A toy problem.



A truss structure (extendable to general FEA) Loading (and parameters) given in terms of random variables (RV)

p = f(P1, P2, P3) vs p=f1(P1), p=f2(P2), p=f3(P3)

What can one compute about structural response when dependency between p1, p2, p3 is unknown?

Common Engineering Solution:

Assume independence between P1, P2, P3 use Monte Carlo simulation and forget about it.

Common Engineering Solution:

Assume independence between P1, P2, P3 and forget about it.

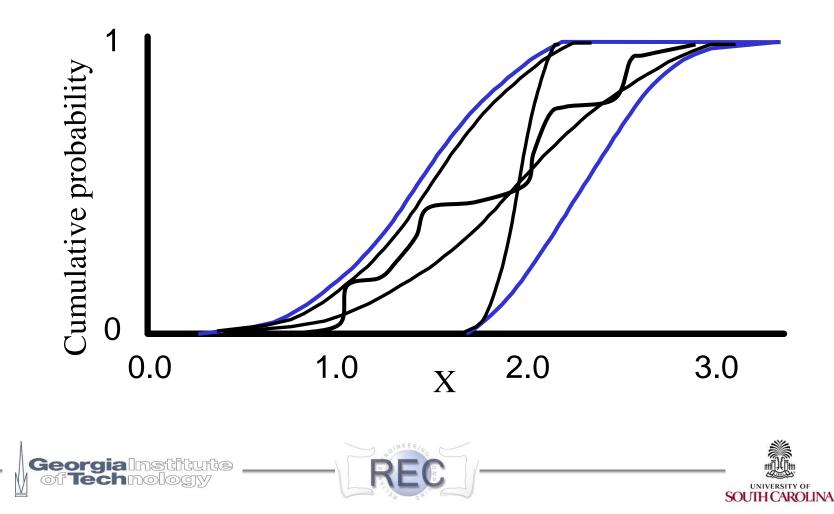
Assuming independence can result in significant underestimation of risk (Ferson et al. 2004).

Outline

- Introduction
- Probability bounds and Structural Analyses
 - P box for representing ignorance
 - Any dependency bounds
 - Nonlinear problems.
- Development of solution of matrix equations with coefficient matrix defined by P-boxes
- Results
- Conclusions

Торіс	REC2004	REC 2016
Engineering Analysis	Truss structural analysis	General FEM
Boundary conditions	Interval loads	P-box loads
Parameters	Interval Parameters 1	P-box parameters
Derived Quantities		Same as primary variables
Dependency		Independent/ and Any Dependency
Linear Mechanics		Non-linear materials, Large strain

Pbox representation for Imprecise Probability



P-Box Finite Element Calculations

Interval Monte Carlo

Direct Calculations (Discrete P-boxes)

P-Box by Interval Monte Carlo

- P box loading
- P box parameters
- Non linear problems
- Independent uncertain variables

P-Box by Direct Methods

- P-box bounday conditions
- P-box parameters
- Non linear problems
- Any Dependency

Copulas

Copulas define dependency between random variable with any marginal distribution.

The marginal distributions are transformed to uniform distribution between [0,1], the Copula is then the CDF of the transformed (ie. Uniform) variables.

Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de L'Institut de Statistiques de l'Université de Paris 8: 229-231.

Georgialnstitute of Technology

Fréchet-Hoeffding copula bounds

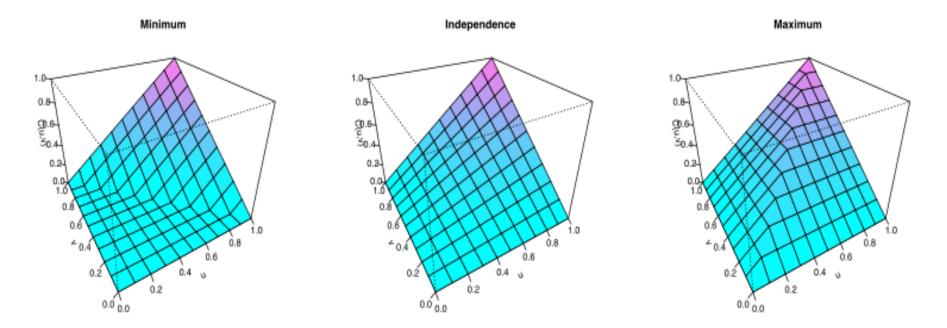


Figure by Matteo Zandi,"Graph of the Fréchet-Hoeffding copula limit Wikimedia commons

Fréchet-Hoeffding copula bounds

 $W(u_1,\ldots,u_d) \leq C(u_1,\ldots,u_d) \leq M(u_1,\ldots,u_d).$

$$W(u_1, \dots, u_d) = \max\left\{1 - d + \sum_{i=1}^d u_i, 0\right\}.$$

$$M(u_1,\ldots,u_d)=\min\{u_1,\ldots,u_d\}.$$

Fréchet–Hoeffding Copulas allow for bounding operation on RV with given marginal distributions with no assumption on dependency

Outline

- Introduction
- Probability bounds and Structural Analyses
 - P box for representing ignorance
 - Any dependency bounds
 - Nonlinear problems.
- Development of solution of matrix equations with coefficient matrix defined by P-boxes
- Results
- Conclusions

Finite Element Equations

f = Ku

$$\mathbf{K}^{P} = \mathbf{A} \operatorname{diag} \left(\mathbf{\Lambda} \boldsymbol{\alpha}^{P} \right) \mathbf{A}^{T}, \qquad \mathbf{f}^{P} = \mathbf{F} \boldsymbol{\delta}^{P},$$

$$\mathbf{K}_{e}^{P} = \begin{cases} E^{P}A/L & 0 & -E^{P}A/L & 0\\ 0 & 0 & 0 & 0\\ -E^{P}A/L & 0 & E^{P}A/L & 0\\ 0 & 0 & 0 & 0 \end{cases}$$

 $\mathbf{A}_{e} = \{-1 \ 0 \ 1 \ 0\}^{T}, \qquad \mathbf{\Lambda}_{e} = \{A/L\}, \qquad \mathbf{\alpha}_{e}^{P} = \{E^{P}\}$

Final System of Linear P-box equations

$$\mathbf{u}^{P} = \left\{ \begin{array}{c} \mathbf{u}_{e}^{P} \\ \vdots \\ \mathbf{u}_{e}^{P} \\ \mathbf{u}_{n}^{P} \end{array} \right\}, \qquad \mathbf{K}^{P} = \left\{ \begin{array}{c} \mathbf{K}_{e}^{P} \\ & \ddots \\ & & \mathbf{K}_{e}^{P} \\ & & & \mathbf{K}_{e}^{P} \end{array} \right\}, \qquad \mathbf{f}^{P} = \left\{ \begin{array}{c} \mathbf{f}_{e}^{P} \\ \vdots \\ \mathbf{f}_{e}^{P} \\ \mathbf{f}_{n}^{P} \end{array} \right\}$$

$$\begin{bmatrix} \mathbf{K}^P & \mathbf{C}^T \\ \mathbf{C} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u}^P \\ \boldsymbol{\lambda}^P \end{bmatrix} = \begin{bmatrix} \mathbf{f}^P \\ \mathbf{0} \end{bmatrix}$$

 $\left(\begin{cases} \mathbf{A} \\ \mathbf{0} \end{cases} \operatorname{diag}(\mathbf{\Lambda} \Delta \alpha^{P}) \left\{ \mathbf{A}^{T} \ \mathbf{0} \right\} + \left\{ \begin{matrix} \mathbf{K}_{0} & \mathbf{C}^{T} \\ \mathbf{C} & \mathbf{0} \end{matrix} \right\} \right) \left\{ \begin{matrix} \mathbf{u}^{P} \\ \mathbf{\lambda}^{P} \end{matrix} \right\} = \left\{ \begin{matrix} \mathbf{F} \\ \mathbf{0} \end{matrix} \right\} \boldsymbol{\delta}^{P}$

Fixed point form

$$\mathbf{K}_{g0}\mathbf{u}_{g}^{P} = \mathbf{F}_{g}\boldsymbol{\delta}^{P} - \mathbf{A}_{g}\operatorname{diag}\left(\boldsymbol{\Lambda}\boldsymbol{\Delta}\boldsymbol{\alpha}^{P}\right)\mathbf{A}_{g}^{T}\mathbf{u}_{g}^{P}.$$

By defining $\mathbf{G} = \mathbf{K}_{g0}^{-1}$, the above equation is rewritten into the following fixed-point form

$$\mathbf{u}_{g}^{P} = (\mathbf{G}\mathbf{F}_{g})\boldsymbol{\delta}^{P} - (\mathbf{G}\mathbf{A}_{g})\left(\mathbf{A}_{g}^{T}\mathbf{u}_{g}^{P}\circ\boldsymbol{\Lambda}\boldsymbol{\Delta}\boldsymbol{\alpha}^{P}\right),$$

where the following equality has been used

$$\operatorname{diag}\left(\boldsymbol{\Lambda}\boldsymbol{\Delta}\boldsymbol{\alpha}^{P}\right)\mathbf{A}_{g}^{T}\mathbf{u}_{g}^{P}=\operatorname{diag}\left(\mathbf{A}_{g}^{T}\mathbf{u}_{g}^{P}\right)\boldsymbol{\Lambda}\boldsymbol{\Delta}\boldsymbol{\alpha}^{P}=\mathbf{A}_{g}^{T}\mathbf{u}_{g}^{P}\circ\boldsymbol{\Lambda}\boldsymbol{\Delta}\boldsymbol{\alpha}^{P},$$

Iterative solution

$$\mathbf{v}^P = \mathbf{A}_g^T \mathbf{u}_g^P$$

$$\begin{aligned} \mathbf{v}^{P} &= (\mathbf{A}_{g}^{T}\mathbf{G}\mathbf{F}_{g})\delta^{P} - (\mathbf{A}_{g}^{T}\mathbf{G}\mathbf{A}_{g})\left(\mathbf{v}^{P}\circ\Lambda\Delta\alpha^{P}\right)\\ \mathbf{v}_{0}^{P} &= (\mathbf{A}_{g}^{T}\mathbf{G}\mathbf{F}_{g})\delta^{P}\\ \mathbf{v}_{i+1}^{P} &= (\mathbf{A}_{g}^{T}\mathbf{G}\mathbf{F}_{g})\delta^{P} - (\mathbf{A}_{g}^{T}\mathbf{G}\mathbf{A}_{g})\left(\mathbf{v}_{i}^{P}\circ\Lambda\Delta\alpha^{P}\right)\\ \mathbf{u}_{g}^{P} &= (\mathbf{G}\mathbf{F}_{g})\delta^{P} - (\mathbf{G}\mathbf{A}_{g})\left(\mathbf{A}_{g}^{T}\mathbf{u}_{g}^{P}\circ\Lambda\Delta\alpha^{P}\right)\end{aligned}$$

ute

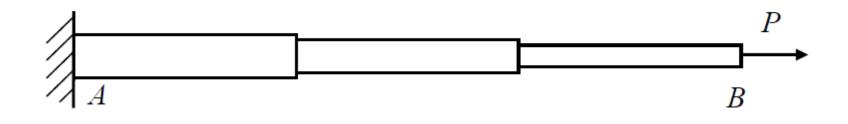
ology

Geor

Outline

- Introduction
- Probability bounds and Structural Analyses
 - P box for representing ignorance
 - Any dependency bounds
 - Nonlinear problems.
- Development of solution of matrix equations with coefficient matrix defined by P-boxes
- Results
- Conclusions

A fixed-end bar subject to axial load at the free end

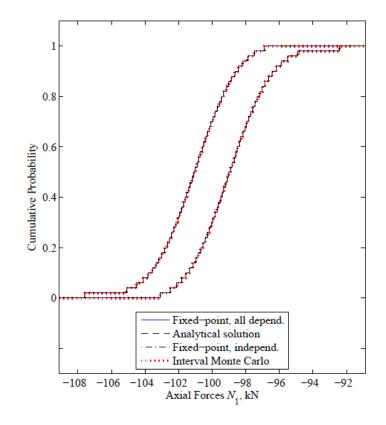


Properties

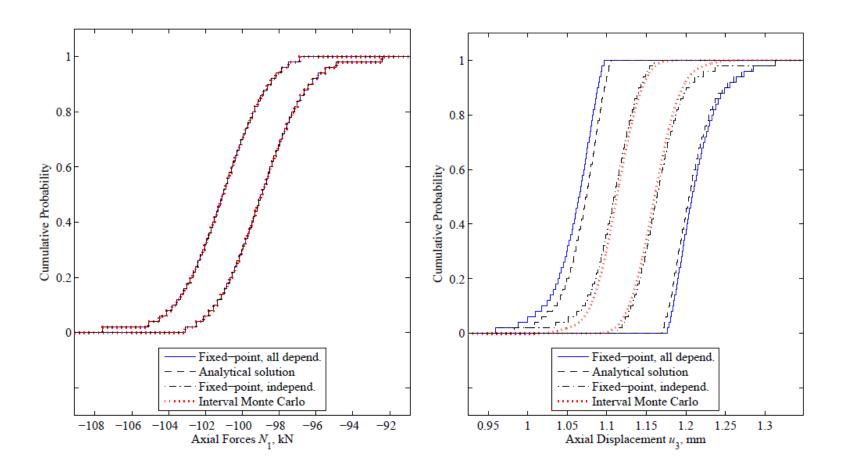
Table I. Bounds on the mean and standard deviation of the contained CDF's in the p-boxes. P - concentrated load; E_i - Young's moduli of the bar in Figure 1.

Concentrated load, kN			Young's moduli, GPa		
	Mean μ_P	Standard deviation σ_P		Mean μ_E	Standard deviation σ_E
P	[98.86, 101.14]	[1.142, 3.136]	E_1	[108.9, 111.1]	[1.142, 3.136]
			E_2	[108.9, 111.1]	[1.142, 3.136]
			E_3	[108.9, 111.1]	[1.142, 3.136]

Results



Results (2)



Results(3)

Table II. Bounds on the mean and standard deviation of the contained CDF's in the p-boxes. N_1 - axial force; u_i - axial displacements of the bar in Figure 1.

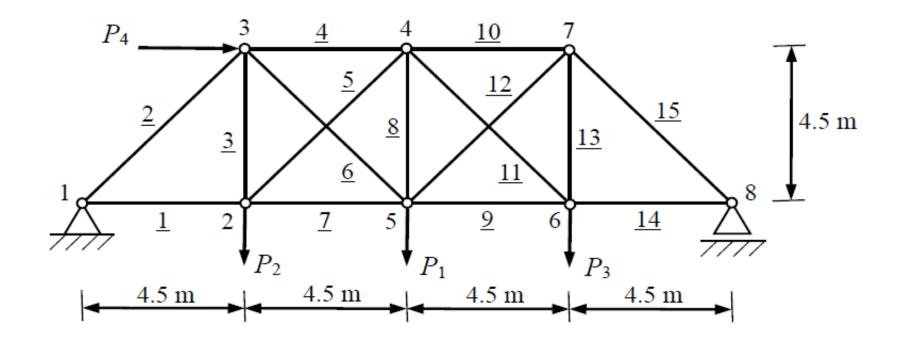
	Axial force N_1 , kN		Axial displacement u_1 , mm			
	Mean μ_{N_1}	Standard deviation σ_{N_1}	Mean μ_{u_1}	Standard deviation σ_{u_1}		
Current, all depend.	[-101.13, -98.87]	[1.142, 3.136]	[0.2864, 0.3197]	[0.0000, 0.0244]		
Reference (analytical)	[-101.13, -98.87]	[1.142, 3.136]	[0.2880, 0.3190]	[0.0000, 0.0227]		
Current, independ.	[-101.13, -98.87]	[1.142, 3.136]	[0.2953, 0.3108]	[0.0030, 0.0172]		
Interval Monte Carlo	[-101.14, -98.88]	[1.127, 3.096]	[0.2965, 0.3098]	[0.0036, 0.0145]		
	Axial disp	Axial displacement u_2 , mm		Axial displacement u_3 , mm		
	Mean μ_{u_2}	Standard deviation σ_{u_2}	Mean μ_{u_3}	Standard deviation σ_{u_3}		
Current, all depend.	[0.6381, 0.7255]	[0.0000, 0.0595]	[1.0586, 1.2141]	[0.0000, 0.1033]		
Reference (analytical)	[0.6436, 0.7232]	[0.0000, 0.0551]	[1.0689, 1.2100]	[0.0000, 0.0954]		
Current, independ.	[0.6637, 0.6999]	[0.0048, 0.0380]	[1.1055, 1.1673]	[0.0068, 0.0631]		
Interval Monte Carlo	[0.6672, 0.6970]	[0.0063, 0.0303]	[1.1120, 1.1617]	[0.0094, 0.0482]		

Geo

Computer time

	Fixed-end bar (s)
Fixed-point, all dependency	0.41
Fixed-point, independent	0.07
Interval Monte Carlo	573.93
Analytical solution	0.01

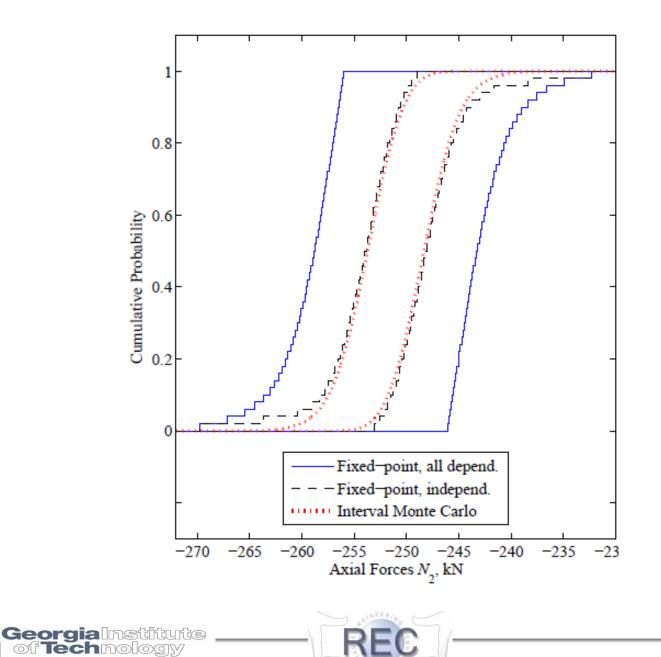
An 8-joint 15-bar symmetric simple truss subject to point loads.



Uncertain Parameters

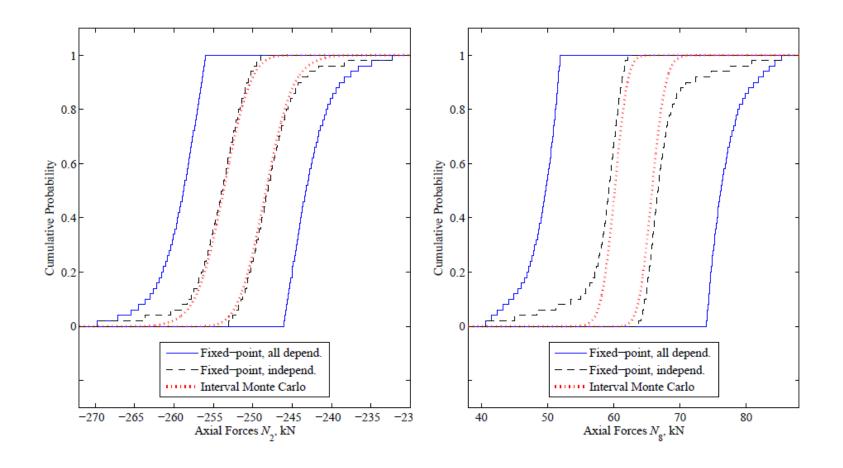
Table IV. Bounds on the mean and standard deviation of the contained CDF's in the p-boxes. P_i - concentrated loads; E_i - Young's moduli of the truss in Figure 3.

Concentrated load, kN			Young's moduli, GPa		
	Mean μ_P	Standard deviation σ_P		Mean μ_E	Standard deviation σ_E
P_1	[198.87, 201.13]	[1.142, 3.136]	E_i	[197.7, 202.3]	[2.285, 6.271]
P_2	[98.87, 101.13]	[1.142, 3.136]			
P_3	[98.87, 101.13]	[1.142, 3.136]			
P_4	[88.87, 91.13]	[1.142, 3.136]			



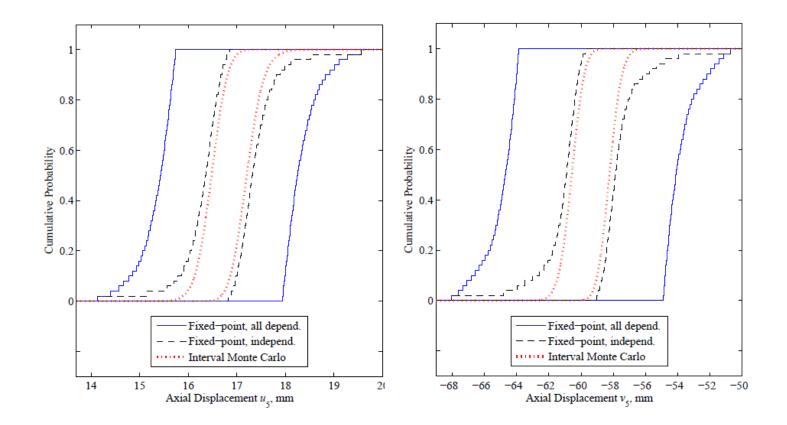
UNIVERSITY OF SOUTH CAROLINA

Element Forces



Georgialnstitute of Technology

Displacements



Georgia Institute of Technology

Computer time

Table III. Computational time of the fixed-end bar (Example 4.1) and the simple truss (Example 4.2) for different methods.

	Fixed-end bar (s)	Simple truss (s)
Fixed-point, all dependency	0.41	13.20
Fixed-point, independent	0.07	2.27
Interval Monte Carlo	573.93	907.68
Analytical solution	0.01	N/A

Outline

- Introduction
- Probability bounds and Structural Analyses
 - P box for representing ignorance
 - Any dependency bounds
 - Nonlinear problems.
- Development of solution of matrix equations with coefficient matrix defined by P-boxes
- Results
- Conclusions

REC

Conclusions

- A method for solving a system of linear equations with p-box entries in a form consisted with finite element methods is presented
- Numerical results indicate the method provides reasonable bounds on CDF.

Conclusions

- The method allows for dependency bounds to be determined from problem parameters.
- This method may form the foundation for extensions to General nonlinear finite element calculations

