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Abstract: This paper focuses on the analysis of thin plates with uncertain structural parameters modelled as 

intervals. The plate is assumed to be orthotropic. Interval uncertainty is associated with the Young’s modulus 

of the plate and also with the applied load. Interval Finite Element Method (IFEM) developed in the earlier 

work for line elements of the authors for truss and frame structures (Rama Rao et al., 2011) is applied to the 

case of thin plates in the present work. This method is capable of obtaining bounds for interval forces and 

moments with the same level of sharpness as displacements and rotations. Example problems pertaining to 

various edge conditions of the thin plate are solved to demonstrate that the present method is capable of 

obtaining sharp bounds. Results are compared to the values of displacements and forces obtained using 

combinatorial and Monte Carlo solutions. 
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1. Introduction 

 

Plates play a major role in several important structures viz. ships, pressure vessels, and other structural 

components. Thus it is important to understand their structural behaviour and possible conditions of failure 

especially under conditions of uncertainty. The structural behaviour of thin plates in bending depends on 

several important factors including load, stiffness characteristics of plate and support conditions. The problem 

of plate bending is one of the oldest in the theory of elasticity and is discussed in several textbooks 

(Timoshenko and Krieger, 1959; Szilard, 2004; Reddy, 2007). Lim et.al. (2007) derived exact analytical 

solutions to bending of rectangular thin plates by employing the Hamiltonian principle with Legendre’s 

transformation. The solution obtained by them for example problems of plates with selected boundary 

conditions shows excellent agreement with the classical solutions. Batista (2010) used the Fourier series to 

compute the analytical solutions of uniformly loaded rectangular thin plates with symmetrical boundary 

conditions.  

 

On the other hand, structural analysis without considering uncertainty in loading or material properties leads 

to an incomplete understanding of the structural performance. Structural analysis using interval variables has 

been used by several researchers to incorporate uncertainty into structural analysis (Koyluoglu, Cakmak and 

Nielson, 1995; Muhanna and Mullen, 1995; Nakagiri and Yoshikawa, 1996; Rao and Sawyer, 1995; Rao and 
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Berke, 1997; Rao and Chen, 1998; Muhanna and Mullen, 2001; Pownuk, 2004; Neumaier and Pownuk, 

2007).  

 

To the authors’ knowledge, applications of interval methods for the analysis of plates with uncertainty of load 

and material properties do not exist anywhere in literature. In view of this, we present an initial investigation 

into the application of interval finite element methods to problems of bending of thin plates. Usually, derived 

quantities in Interval Finite Element Method (IFEM) such as stresses and strains have additional 

overestimation in comparison with primary quantities such as displacements. This issue has plagued 

displacement-based IFEM for quite some time. The recent development of mixed/hybrid IFEM formulation 

by the authors (Rama Rao et al., 2011) is capable of simultaneous calculation of interval strains and 

displacements with the same accuracy.  

 

This work presents the application of interval finite element methods to the analysis of thin plates. Uncertainty 

is considered in both the applied load and Young’s modulus as explained in section 2. Examples are finally 

presented and discussed. In the present study a rectangular plate is analysed different type of edge conditions 

of such as clamped and simply supported edge conditions and the deformations are obtained. 

2. Linear Interval Finite Element Method 

 

Finite element method is one of the most common numerical methods for solving differential and partial 

differential equations with enormous applications in different fields of science and engineering. Interval finite 

element methods have been developed to handle the analysis of systems for which uncertain parameters are 

described as intervals. A variety of solution techniques have been developed for IFEM. A comprehensive 

review of these techniques can be found in (Zhang, 2005; Muhanna et al., 2007; Rama Rao et al., 2011). 

Interval analysis concerns the numerical computations involving interval numbers. All interval quantities will 

be introduced in non-italic boldface font. The four elementary operations of real arithmetic, namely addition 

(+), subtraction (˗), multiplication (×) and division (÷) can be extended to intervals. Operations 

},,,{  over interval numbers x and y are defined by the general rule (Moore, 1966; Moore, 1979; 

Moore et al., 2009; Neumaier, 1990) 

 

 },,,,{)]max(),[min(     for   yxyxyx  (1) 

in which x and y denote generic elements x x and y y. Software and hardware support for interval 

computation are available such as (Sun microsystems, 2002; Knüppel, 1994; INTLAB, 1999). For a real-

valued function ),...,( 1 nxxf , the interval extension of ) (f is obtained by replacing each real variable xi by 

an interval variable xi and each real operation by its corresponding interval arithmetic operation. From the 

fundamental property of inclusion isotonicity (Moore, 1966), the range of the function ),...,( 1 nxxf can be 

rigorously bounded by its interval extension function 

 
 },..,|),..,({),..,( 1111 nnnn xxxxff xxxx   (2) 
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Eq. (2) indicates that ),...,(
1 n

f xx contains the range of ),...,(
1 n

xxf for all
ii

x x . A natural idea 

to implement interval FEM is to apply the interval extension to the deterministic FE formulation. 

Unfortunately, such a naïve use of interval analysis in FEM yields meaningless and overly wide results 

(Muhanna and Mullen, 2001; Dessombz et al., 2001). The reason is that in interval arithmetic each occurrence 

of an interval variable is treated as a different, independent variable. It is critical to the formulation of the 

interval FEM that one identifies the dependence between the interval variables and prevents the 

overestimation of the interval width of the results. In this paper, an element-by-element (EBE) technique is 

utilized for element assembly (Muhanna and Mullen, 2001; Zhang, 2005). The elements are detached so that 

there are no connections between elements, avoiding element coupling. The Lagrange multiplier method is 

then employed to impose constraints to ensure the compatibility. Then a mixed/hybrid formulation is 

incorporated to simultaneously calculate the interval strains and displacements (Rama Rao, Mullen and 

Muhanna, 2011). This linear formulation results in the interval linear system of equations that has the 

following structure: 

 buD FaABK  )( , (3) 

with interval quantities in D and b  only. The term )( ABK D  represents the interval structural stiffness 

matrix and the a + F b  term, the structural loading. Any interval solver can be used to solve Eq. (3), however, 

the following iterative scheme that is developed by Neumaier and Pownuk (Neumaier and Pownuk, 2007) is 

superior for large uncertainty, defining: 

 
1)(:  ABDKC 0  (4) 

where D0 is chosen in a manner that ensures its invertability (often D0 is selected as the midpoint of D), the 

solution u can be written as: 

 dbu )()()( CBCFCa   (5) 

To obtain a solution with tight interval enclosure we define two auxiliary interval quantities, 

 
,)( 0 vDd

uv





D

A
 (6) 

which, given an initial estimate for u, we iterate as follows: 

 

 ,){(,})()(){
1

0

11 kk

cc

kkkk D     ACBACFACa dvDdvdbv 


 (7) 

until the enclosures converge, from which the desired solution u can be obtained in a straightforward manner. 

In this paper the above mentioned iterative enclosure has been used for the solution of the linear interval 

system of Eq. (3). The solution includes displacements, strains, and forces simultaneously with the same high 

level of accuracy. 
 

3. Finite Element Model of the Plate 

 

Thin plates are characterized by a structure that is bounded by upper and lower surface planes that are 

separated by a distance h as shown in Figure 1. The x-y coordinate axes are located on the neutral plane of 

the plate (the "in-plane" directions) and the z-axis is normal to the x-y plane. In the absence of in-plane 
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loading, the neutral plane is at the midpoint through the thickness.  In the present work, it will be assumed 

that  the thickness of plate h is a constant. Consequently, the location of the x-y axes will lie at the mid-surface 

plane (z=0).  

 

In most plate applications, the external loading includes distributed load normal to the plate (z direction), 

concentrated loads normal to the plate, or in-plane tensile, bending or shear loads applied to the edge of the 

plate. Such loading will produce deformations of the plate in the zyx ,, coordinate directions which in general 

can be characterized by displacements ),,( zyxu , ),,( zyxv and ),,( zyxw  in the x, y and z directions, 

respectively. 

 
 

The plate is discretized into rectangular ACM (Adini-Clough-Melosh) plate elements. The ACM element is 

a non-conforming element with 12 degrees of freedom (3 degrees of freedom at each of the four nodes). 

Degrees of freedom at each node (i) are the transverse displacement and normal rotation about each axis,              

iw , 
y

wi
xi




 and

x

wi
yi




 , as illustrated in Figure 2. Note that yi  is a vector in the negative y direction.   

Node "1" is selected at the lower left comer of the plate (x=-a, y=-b) and that the nodes are numbered 1,2,3,4 

in counterclockwise direction around the plate. We assume that the plate dimensions are given by 2a and 2b 

as shown in Figure 1 and that the x-y coordinate system is located at the center of plate.  The 12 degrees of 

freedom are arranged in the vector of generalized nodal displacements d  as: 

                        Tyxyxyxyx

T
wwwwd 444333222111                       (8) 

 

Figure 1. Geometry of thin plate. 
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3.1. STIFFNESS MATRIX AND FORCE VECTOR OF THE ACM PLATE ELEMENT 

 

We assume that ),( yxw is some function over the plate geometry as follows: 
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  333223221),( xyyxyxyyxxyxyxyxyxw                   (10) 

 

which is represented as  

 

                               ),(),( yxNyxw                                                                                                     (11) 
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Substituting the values of x and y coordinates of nodes 1,2,3,4 of the plate in the Eq. 12 will yield: 

 

                          d                                                                                                                            (13) 

 

where  and  d  are vector of unknown coefficients and vector of generalized nodal displacements for the 

element respectively. Substituting   from Eq. (13) in Eq. (11), we obtain  

 

                                     dyxNyxw
1

),(),(


                                                                                      (14) 
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Figure 2. Rectangular element with 12 degrees of freedom. 
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The curvatures of the plate element viz. xx , yy and xy are obtained from the second order partial 

differentiation of ),( yxw w.r.t x and y as follows: 

                
2

2

x

w
xx




   ;

2

2

x

w
yy




 ;   

yx

w
xy
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
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2

2                                                                                    (15) 
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             (16) 

 

Thus the vector of curvatures  )(e for the plate element can be expressed as 

 

                   dB
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From the moment-curvature relationship   DM }{ we obtain  
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                                                                                   (18) 

where  
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Total potential energy stored in the plate due to bending is given by (Gallagher, 1975; Bathe, 1996) 
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Using the first variation of , we obtain, 

              dKddxdyBDBP e

a

a

b

b

TTe )(11)( 













 

 



                                                                            (21) 

where the stiffness matrix  )(eK  is given as 

                                11)( 
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and the nodal force vector for the plate element  )(eP  is given as: 

                              

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                                                                           (23) 

 

 

4. Interval Finite Element Model of the Plate 

 

An element-by-element (EBE) technique is utilized for element assembly as outlined in section 2. 

Interval uncertainty is considered in pressure zp  and Young’s modulus of the plate E . Accordingly, the 

stiffness matrix and the force vector of the plate element are rewritten, denoting interval quantities in boldface, 

as follows: 
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and 
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For convenience,  1B  is denoted as  1B . Thus Equation (24) can be rewritten as 
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The  D matrix appearing in the above equation is an interval matrix owing to the uncertainty of Young’s 

modulus E . It can be expressed as follows: 
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where E is the interval Young’s modulus and  is the Poisson’s ratio.  

 

Following the work of  Xiao et.al., (Xiao, Fedele and Muhanna, 2013), the  D  matrix is decomposed as 

follows:  

 

        T

kkkk AdiagA )( αΛD                                                                                                                          (28) 
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where Eα k ;
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Applying numerical integration to Eq. (26), then 

  
 


M

i

N

j

iiiiii

T

ji yxByxDyxBww
1 1

11 ),(),(
~

),((e)
K                                                                                       (30) 
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Eq. (31) can be rewritten as 
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So the decomposition for the element stiffness matrix  (e)
K  is expressed as 

     Tee AdiagA )()( )( αK
(e)                                                                                            (33) 

 

The stiffness matrix of the structure K is obtained from the element stiffness matrices 
(e)

K described in Eq. 

(33) as follows: 
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This can be denoted as  

                                                   TAA DK                                                                                             (35) 

 

When each plate element is subjected to an interval pressure zp , the corresponding interval force vector  P

described in Eq. (23) for the structure can be defined using the M matrix approach outlined by the authors 

(Muhanna and Mullen, 1999) as follows: 
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where n is the number of degrees of freedom for the structure and m is the number of elements. Each column 

of  M matrix contains the contribution of deterministic pressure zp on each plate element and the interval 

vector  δ contains interval multipliers corresponding to pressures acting on each of the m elements of the 

structure. In addition, the vector of point loads acting on the nodes of the structure can be represented                           

as cP . 

 

The current interval formulation is based on the Element-By-Element (EBE) finite element technique 

(Muhanna and Mullen, 2001; Rama Rao, Mullen and Muhanna, 2011). In the EBE method, each element has 

its own set of nodes, but the set of elements is disassembled, so that a node belongs to a single element. A set 

of additional constraints is introduced to force unknowns associated with coincident nodes to have identical 

values. Thus, the constraint equation VCU  takes the form 

 

                                                                    0UC                                                                                   (37) 

 

where the constraint matrix C is a deterministic one (fixed point matrix). Eq. (17) can be rewritten to 

represent the interval form of strain-curvature relationship as 

                                                    dκ
(e) 1

 B                                                                                           (38) 

where  d is the vector of nodal displacements for the element. At the global level, this relation can be 

expressed as  

                                                  κUB1                                                                                                  (39) 

where  1B is the strain-curvature matrix and  κ  is the vector of interval curvatures for the structure. Eq. 

(39) can be used as an additional constraint in addition to Eq. (37). Thus the modified potential energy 
*

can be expressed as      

   

                         )()(
2

1
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                                                (40) 

 

Invoking the stationarity of
* , that is 0*  , and considering Eq. (40), we obtain 
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 (41) 

where 1 and 2 are vectors of Lagrange Multipliers. The solution of Eq. (41) will provide the values of 

interval displacements U (primary unknowns) as well as interval values of 1λ , 2λ and  κ  (secondary 

unknowns) with the same level of sharpness (Rama Rao, Mullen and Muhanna ,2011). It is further observed 

from Eq. (41) that the Lagrange multipliers  2λ have zero value.  
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                                                                     (42) 

Eq. (41) is now similar to Eq. (3) and thus can be solved using the Neumaier’s approach outlined in section 

2. The vector of interval moments  M can be obtained from the vector of interval curvatures  κ as  
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The applicability of the procedure outlined above is illustrated by solving numerical examples in the 

next section. 

 

5. Example Problems 

A thin rectangular plate with clamped edges is chosen to illustrate the applicability of the present 

approach to handle uncertainty in load and material properties in case of thin plate problems. These examples 

are chosen to demonstrate the ability of the current approach to obtain sharp bounds to the displacements and 

forces even in the presence of large number of interval variables. The two example problems are solved for 

various levels of interval widths of the loads centered at their nominal values. All interval variables are 

assumed to vary independently. Solution procedure outlined in the previous sections is used to perform the 

linear interval finite element analysis. The material and geometric properties of the plate are given in Table 

1 below.  The discretization scheme adopted is shown in Figure 3.  

 

Table 1.  Properties of rectangular plate and discretization scheme. 

 
Length  Lx 2.0 m 

Width Ly 3.0 m 

Thickness 0.025 m 

Young’s modulus 210 GPa 

Poisson’s ratio  0.3 

Applied Pressure zp  14.0103 Pa 

Number of divisions along x-axis nx  

Number of divisions along y-axis ny  

Notation for discretization scheme nynx  
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First the present interval approach is validated by solving the problem of a rectangular plate with a 4x4 

discretization scheme. Solution is computed using the present interval approach and combinatorial solution. 

The computation of results for combinatorial solution required computation of results for 216=65,536 

combinations.  

The results obtained for clamped plate for vertical displacement at center of the plate (at node 13), slope 

y at node 12 and slope x at node 7  at various levels of uncertainty of Young’s modulus (E) are shown in  

Figure 4 , Figure 5 and Figure 6 respectively. Figure 7 and Figure 8 show the variation of xxM and yyM at 

the center of the plate (at node 13) at various levels of uncertainty of Young’s modulus (E). These figures 

show the lower and upper bounds of the present interval solution and the corresponding results of the 

combinatorial solution for various levels of uncertainty of Young’s modulus from 0 percent to 10 percent.  It 

is observed from these figures that the bounds of the present interval solution sharply enclose the bounds of 

combinatorial solution at all levels of uncertainty.  

 

 

 

 

 

 

 

Figure 3. Discretization scheme of rectangular plate. 
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 Figure 5. Clamped plate- variation of at node 12 w.r.t. uncertainty of E. 

Figure 4. Clamped plate- variation of vertical displacement of center of plate (at node 13) w.r.t. uncertainty of E. 
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Figure 6. Clamped plate- variation of at node 7 w.r.t. uncertainty of E. 

Figure 7. Clamped plate- variation of at center of plate (at node 13) w.r.t. uncertainty of E. 
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Results are computed for the 44 plate for the following cases: 

A) Load uncertainty of 10 percent (±5 percent variation of load about its mean value) alone is present 

B) 1 percent uncertainty of E(±0.5 percent variation of E about its mean value) alone 

C) Load uncertainty of 10 percent along with 1 percent uncertainty of E. 

 

Tables 2, 3 and 4 present the results of selected displacements and rotations corresponding to cases A, B and 

C respectively. Similarly, Tables 5, 6 and 7 present the results of moments at the center of the plate 

corresponding to cases A, B and C respectively.   

 

It is observed from the Tables 2 and 5 that the results of the interval solution coincide with those obtained 

using combinatorial approach and thus provide exact bounds to the combinatorial solution. It is observed 

from Tables 3 and 6 that the interval solution gives sharp bounds to the values of selected displacements and 

rotations w.r.t the corresponding values obtained using combinatorial solution. As already mentioned, these 

solutions required computation of 216 =65536 combinations. Tables 4 and 7 show the results computed for 

10 percent load uncertainty along with 1 percent uncertainty of Young’s modulus E. It is impractical to 

compute combinatorial solution in this case, as it would require computation of solution for 

216216=4,294,967,296 combinations. Instead, the bounds of the solution are computed using MCS (Monte-

Carlo Simulations).  The results computed in Tables 4 and 7 are for 20,000 simulations. It is to be noted here 

that the results obtained using MCS provide inner bounds to the combinatorial solution whereas the results 

obtained using interval solution provide outer bounds to the combinatorial solution. 

 

 

Figure 8. Clamped plate- variation of at center of plate (at node 13) w.r.t. uncertainty of E. 
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Table 2.  Clamped rectangular plate (44)– selected displacements and rotations of the plate for 10% uncertainty of load (Case-A). 

 
Method w13103(m) 

x 103(radians) at node 7 y 103(radians) at node 12 

 Lower Upper Lower Upper Lower Upper 

Combinatorial -1.90416 -1.72281 -1.10534 -0.96432 2.55516 2.82412 

Interval  -1.90416 -1.72281 -1.10534 -0.96432 2.55516 2.82412 

Error% 0.0 0.0 0.0 0.0 0.0 0.0 

 
Table 3.  Clamped rectangular plate(44)- selected displacements and rotations of the plate for 1% uncertainty of E (Case-B). 

 
Method w13103(m) 

x 103(radians) at node 7 y 103(radians) at node 12 

 Lower Upper Lower Upper Lower Upper 

Combinatorial -1.82260 -1.80446 -1.04167 -1.02805 2.67626 2.70315 

Interval  -1.82302 -1.80395 -1.04455 -1.02510 2.67482 2.70446 

Error% 0.023 0.028 0.276 0.287 0.054 0.048 

 
Table 4. Clamped rectangular plate(44)- selected displacements and rotations of the plate for 10% uncertainty of load and  1% 

uncertainty of E (Case–C). 

 
Method w13103(m) 

x 103(radians) at node 7 y 103(radians) at node 12 

 Lower Upper Lower Upper Lower Upper 

MCS -1.87530 -1.74648 -1.07575 -0.97905 2.59554 2.78867 

Interval  -1.91180 -1.71030 -1.10937 -0.94955 2.54020 2.84412 

Error% 1.946 2.072 3.125 3.013 2.132 1.988 

 

Table 5. Clamped rectangular plate (44)- moments at the center of the plate for 10% uncertainty of load (Case-A). 

 

Method 
xxM (kN) at node 13 yyM 103(kN) at node 13 

 Lower Upper Lower Upper 

Comb -2653.612 -2400.887 -1421.684 -1243.397 

Interval  -2653.612 -2400.887 -1421.684 -1243.397 

Error% 0.0 0.0 0.0 0.0 

 
Table 6. Clamped rectangular plate (44)- moments at the center of the plate for 1% uncertainty of E (Case-B). 

 
Method 

xxM (kN) at node 13 yyM 103(kN) at node 13 

 Lower Upper Lower Upper 

Comb -2546.794 -2507.773 -1343.636 -1321.502 

Interval  -2561.199 -2493.300 -1358.769 -1306.311 

Error% 0.566 0.577 1.126 1.150 
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Table 7. Clamped rectangular plate (44)- moments at the center of the plate for 10% uncertainty of load and                                 1% 

uncertainty of E (Case-C). 

 

Method 
xxM (kN) at node 13 yyM 103(kN) at node 13 

 Lower Upper Lower Upper 

MCS -2612.438 -2425.942 -1383.487 -1259.684 

Interval  -2678.945 -2358.225 -1434.310 -1211.391 

Error% 2.546 2.791 3.674 3.834 

 

 

Figure 9 presents the variation of the lower and upper bounds of the interval displacement zw along the 

length and width of the plate respectively. Figure 10 presents the variation of the lower and upper bounds of 

the slope x  along the width of the plate. Figure 11 presents the variation of the lower and upper bounds of 

the slope y  along the length of the plate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Clamped plate- variation of vertical displacement along the length of the plate with 10% uncertainty of load 

and 1% uncertainty of E. 
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Figure 11. Clamped plate- variation of   along the length of the plate with 10% uncertainty of load and 1% uncertainty of E. 

Figure 10. Clamped plate- variation of   along the width of the plate with 10% uncertainty of load and 1% uncertainty of E. 
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Tables 8, 9 and 10 present the values of selected displacements and rotations for a discretization scheme 

of 2020 (400 elements) for cases A, B and C respectively. Similarly, Tables 11, 12 and 13 present the values 

of moments at the center of the plate for cases A, B and C respectively. It is to be noted here that the 

computation of combinatorial solution for cases A or B would require 2400 combinations while it would 

require computation of 2800 combinations for case C. Thus it is practically impossible for to compute the 

combinatorial solution. Instead, the results of the bounds obtained using 10000 Monte Carlo simulations are 

presented. It is here to be noted that the bounds of the interval solution enclose the corresponding bounds of 

the combinatorial solution from outside. On the other hand, the bounds of the results computed using Monte 

Carlo solution enclose the corresponding bounds of combinatorial solution from inside. It is to be further 

noted that the percentage error reported in Tables 5 through 13 can be reduced by increasing the number of 

simulations. However it is observed that it is computationally time consuming.  

 
Table 8. Clamped rectangular plate (2020)– displacements at the center of the plate for 10% uncertainty of load (Case-A). 

 
Method 

221w 103(m) x 103(radians) at node 111 y 103(radians) at node 216 

 Lower Upper Lower Upper Lower Upper 

MCS -1.65855 -1.63336 -8.43218 -8.25503 2.42576 2.46399 

Interval  -1.72747 -1.56295 -8.85896 -7.81985 2.32204 2.56667 

Error% 4.155 4.311 5.061 5.272 4.276 4.167 

 
Table 9. Clamped rectangular plate (2020)– displacements  center of the plate for 1% uncertainty of E (Case-B). 

 
Method 

221w 103(m) x 104(radians) at node 111 y 103(radians) at node 216 

 Lower Upper Lower Upper Lower Upper 

MCS -1.64694 -1.64384 -8.35812 -8.32283 2.44201 2.44683 

Interval  -1.65386 -1.63656 -8.42754 -8.25127 2.43025 2.45845 

Error% 0.420 0.443 0.831 0.860 0.482 0.475 

 
Table 10. Clamped rectangular plate (2020)– displacements at the  center of the plate for 10% uncertainty of load and 1% uncertainty 

of E (Case-C). 

 
Method 

221w 103(m) x 103(radians) at node 111 y 103(radians) at node 216 

 Lower Upper Lower Upper Lower Upper 

MCS -1.66052 -1.63068 -8.43013 -8.25141 2.42244 2.46768 

Interval  -1.73665 -1.55377 -8.95341 -7.72540 2.30699 2.58172 

Error% 4.585 4.716 6.207 6.375 4.766 4.621 

 
Table 11. Clamped rectangular plate (2020)– moments  center of the plate for 10% uncertainty of load (Case-A). 

 
Method 

xxM (kN) at node 221 yyM 103(kN) at node 221 

 Lower Upper Lower Upper 

MCS -2096.211 -2057.435 -1154.767 -1124.961 

Interval  -2180.916 -1973.210 -1204.756 -1077.381 

Error% 4.041 4.094 4.329 4.229 

 
 

128



 Interval Finite Element Analysis of Thin Plates 

 

REC 2016 – M. V. Rama Rao, R. L. Muhanna and R. L. Mullen 

Table 12. Clamped rectangular plate (2020)– moments at the center of the plate for 1% uncertainty of E (Case-B). 
 

Method 
xxM (kN) at node 221 yyM 103(kN) at node 221 

 Lower Upper Lower Upper 

MCS -2088.860 -2064.535 -1146.630 -1135.780 

Interval  -2127.365 -2026.761 -1175.676 -1106.461 

Error% 1.843 1.830 2.533 2.581 
 

 

Table 13. Clamped rectangular plate (2020)– moments at the center of the plate for 10% uncertainty of load and                                 1% 

uncertainty of E (Case-C). 
 

Method 
xxM (kN) at node 221 yyM 103(kN) at node 221 

 Lower Upper Lower Upper 

MCS -2108.068 -2051.424 -1161.423 -1121.883 

Interval  -2234.305 -1919.821 -1242.057 -1040.080 

Error% 5.988 6.415 6.943 7.292 

 

 

6. Conclusion 

 

A linear Interval Finite Element Method (IFEM) for structural analysis of thin plates is presented. Uncertainty 

in the applied load and Young’s modulus is represented as interval numbers. Results are also computed using 

combinatorial solution and Monte Carlo simulations as appropriate. Example problems illustrate the 

applicability of the present approach to the problem of predicting the structural behavior of thin plates in the 

presence of uncertainties.  

 
               Acknowledgements 

The first author would like to gratefully acknowledge the help received via international travel funding by 

the Technical Education Quality Improvement Program (TEQIP- Phase II) of Government of India and its 

sanction by the administration of Vasavi College of Engineering, Hyderabad, India. 

 
References 

 
Bathe, K. Finite Element Procedures, Prentice Hall, Englewood Cliffs, New Jersey 07632, New Jersey, 1996. 
Batista, M. Uniformly Loaded Rectangular Thin Plates with Symmetrical Boundary Conditions. Cornel University 

Library, USA, http://arxiv.org/abs/1001.3016,2010.  
Dessombz, O., F. Thouverez, J.-P. Laîné, and L. Jézéquel. Analysis of mechanical systems using interval computations 

applied to finite elements methods. J. Sound. Vib., 238(5):949-968, 2001. 
Gallagher, R. H. Finite Element Analysis Fundamentals, Prentice Hall, Englewood Cliffs, USA, 1975. 
Knüppel,O. PROFIL / BIAS — A Fast Interval Library. Computing, 53:277–287, 1994. 
Köylüoglu, U., S. Cakmak, N. Ahmet and R. K. Soren. Interval Algebra to Deal with Pattern Loading and Structural 

Uncertainty. Journal of Engineering Mechanics 121(11): 1149–1157, 1995. 
Lim, C.W., S. Cui, W. A. Yao. On new symplectic elasticity approach for exact bending solutions of rectangular thin 

plates with two opposite sides simply supported, International Journal of Solids and Structures, Volume 
44(16):5396-5411, 2007.  

Moore, R., E. Interval Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1966. 
Moore, R. E. Methods and applications of interval analysis, SIAM, Philadelphia, 1979. 

129



 M. V. Rama Rao, R. L. Muhanna and R. L. Mullen 

 

  REC 2016 - M. V. Rama Rao, R. L. Muhanna and R. L. Mullen 

Moore, R. E., R. B. Kearfott, M. J. Cloud. Introduction to Interval analysis, SIAM, 2009. 
Muhanna, R. L. and R. L. Mullen. Development of Interval Based Methods for Fuzziness in Continuum Mechanics. In 

Proceedings of   ISUMA-NAFIPS’95: 17-20 September, IEEE, 1995. 
Muhanna, R. L. and R. L. Mullen. Uncertainty in Mechanics Problems—Interval-Based Approach, Journal of 

Engineering Mechanics 127(6): 557–566, 2001. 
Muhanna, R. L., H. Zhang and R. L. Mullen. Interval finite element as a basis for generalized models of uncertainty in 

engineering mechanics. Reliable Computing, 13(2):173–194, 2007. 
Nakagiri, S. and N. Yoshikawa. Finite Element Interval Estimation by Convex Model. In Proceedings of 7th ASCE 

EMD/STD Joint Specialty Conference on Probabilistic Mechanics and Structural Reliability, WPI, MA, 7.-9. August, 
1996. 

Neumaier, A. Interval methods for systems of equations, Cambridge University Press, 1990. 
Neumaier, A. and A. Pownuk. Linear Systems with Large Uncertainties, with Applications to Truss Structures, Reliable 

Computing, 13(2):149-172, 2007. 
Pownuk, A. Efficient method of solution of large scale engineering problems with interval parameters." Proc. 

NSF workshop on reliable engineering computing (REC2004), R. L. Muhanna and R. L. Mullen, eds., Savannah, 
GA, USA, 2004. 

Rama Rao, M. V., R. L. Mullen, R. L. Muhanna. A New Interval Finite Element Formulation with the Same Accuracy 
in Primary and Derived Variables, International Journal of Reliability and Safety, Vol. 5, Nos. ¾, 2011. 

Rao, S. S. and P. Sawyer. Fuzzy finite element approach for analysis of imprecisely defined systems. AIAA J., 
33(12):2364–2370, 1995. 

Rao, S. S. and  L. Berke. Analysis of uncertain structural systems using interval analysis.  AIAA J., 35(4):727–735, 1997. 
Rao, S. S. and Li Chen. Numerical solution of fuzzy linear equations in engineering analysis. International Journal of 

Numerical Methods in Engineering.,43:391–408, 1998. 
Reddy, J.N. Theory and Analysis of Elastic Plates and Shells. Second edition. CRC Press. Taylor and Francis group, 

Boca Raton, London and New York, 2007. 
Rump, S.M. INTLAB - INTerval LABoratory. In Tibor Csendes, editor, Developments in Reliable Computing, pages 

77-104. Kluwer Academic Publishers, Dordrecht, 1999. 
Sun microsystems. Interval arithmetic in high performance technical computing. Sun microsystems. (A White 

Paper), 2002. 
Szilard, R. Theories and Applications of Plate Analysis: Classical Numerical and Engineering Methods, 2004.  
Wiley Timoshenko, S. and S. Woinowsky-Krieger. Theory of Plates and Shells. Second edition. McGraw Hill, 1959. 
Xiao, N., F. Fedele and R. L. Muhanna. Inverse Problems Under Uncertainties-An Interval Solution for the Beam Finite 

Element, in Deodatis, B. R. Ellingwood, D. M. Frangopol, Icossar, ISBN: 978-1-138-00086-5, 2013. 
Zhang, H. Nondeterministic Linear Static Finite Element Analysis: An Interval Approach. Ph.D. Dissertation, Georgia 

Institute of Technology, School of Civil and Environmental Engineering, 2005. 

 

 

130




