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Abstract: The developed method for a fail-safe optimal design of structures is based on a coupled
approach of optimization involving a genetic algorithm, the fracture mechanical analysis, and un-
certainty analysis enabling the quantification of epistemic uncertainty in the fracture process. The
fail-safe structures are intended to retain their functionality even if subjected to certain damage
conditions, e.g. a local failure of structural members. In the proposed approach, the failure process
is modeled by means of the finite element analysis, employing the concept of discrete fracturing as
well as the configurational mechanics based criteria. The investigations on safe failure are enhanced
by the quantification of the influence of uncertainties. The uncertainties arising in the failure process
of structures, which is governed by crack initiation and growth phenomena are not restricted to
variability and randomness. In a structure designed as a system of coupled substructures, the crack
initiation position is uncertain but not random, since it results from the boundary conditions change
initiated by the occurrence of a certain failure scenario and damage of particular neighbouring
structural members. For the modeling of this type of uncertainty, the uncertainty model fuzziness
is applied. By means of the proposed method, the optimal design configuration is identified under
the consideration of the uncertain crack propagation.
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1. Introduction

In civil and mechanical engineering, the fail-safe design concepts are gaining on importance. Thus,
for crucial structures, in parallel to standard design procedures aiming at providing sufficient load-
bearing capacity, safe failure modes are planned and special design solutions are introduced to
enforce an intended structural behavior in case of failure due to unforeseen events as extraordinary
loading, impact, fatigue or material defects. Thereby, the main objective is to develop structures,
which continue to perform its basic functions even under a certain damage level and are prevented
from the catastrophic failure in form of chain reaction like sequential dysfunction of structural
components. The fail-safe design strategy constitutes one of three engineering design concepts
accounting for failure, next to the safe-life and the damage tolerance design principles (Dilger et
al., 2009), (Wood and Engle, 1987), (Cazes, 2013).

The fail-safe design strategies are based upon the application of special design solutions as the
redundancy of structural parts, multiple load paths or intentional weak links. Further solutions,
considered also in the present contribution, are based on the application of crack arresters, which
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hinder the crack propagation permitting solely the local failure of a substructure and preventing
from damage escalation (Zhang et al., 2009). In parallel to the mentioned particular fail-safe design
solutions, some systematic fail-safe design optimization approaches are introduced in (Sun et al.,
1976), (Nguyen and Arora, 1982) and (Shechter, 1994). Though, the application of these approaches
is limited to truss-like structures and the failure modeling is restricted to the failure of joints. In the
present work, a fail-safe design optimization procedure is proposed, which involves failure modeling
on the basis of a fracture mechanical solution and is thus applicable to a wider range of structures. In
particular, the investigation of the failure process is introduced within a finite element framework by
combination of discrete fracturing and configurational mechanics based criteria (Özenç and Kaliske,
2014), (Eshelby, 1951).

Furthermore, the proposed fail-safe design optimization approach is based upon the analysis of
uncertainties in the fracture process. An established approach for the consideration of uncertainty of
random nature in failure events is the probabilistic fracture mechanics, which is commonly applied
for reliability assessment of structures (Rahman, 2001), (Rahman, 2002), (Novák et al., 2005),
(Leonel et al., 2010). Further contributions on uncertainty consider a probabilistic fatigue crack
growth model (Yang and Manning, 1996), (Besterfield et al., 1991), (Riahi et al., 2010) or investigate
the size effect in probabilistic modeling of quasibrittle fracture (Bǎzant, 2001), (Vorechovský, 2004).
In contrary, in the present work, nonstochastic uncertainty model − the model fuzziness (Möller
and Beer, 2004), (Möller et al., 2000) is applied for the characterization of the crack initiation
phenomenon in a structural system with coupled substructures.

The introduced fail-safe design optimization method is numerically realized as a coupled ap-
proach of a genetic algorithm based optimization, the fracture mechanical analysis and the fuzzy
analysis. The interaction between the genetic algorithm and the fracture analysis enables to guide
the uncertain crack path propagation direction into substructure preserved with crack arresters and
thus to identify fail-safe designs, for which only local failures of substructures can occur instead of
total failure of the system.

2. Fail-Safe Design Task

The exhibiting of a fail-safe function by a structure is understood as performing according to a
predefined safe failure mode defined by a projected, not extensive failure of substructures, while
the global system stability is maintained. In addition, the pursuation for the optimality implies that
a design configuration is identified, for which the optimal performance within numerous objective
functions, also related to safe failure, is expected. The safe failure modes are developed for a
structure under the assumption, that the damage of particular substructures occurs in such a
manner, that the neighbouring crucial structural elements, which substantially contribute to the
global system stability keep performing in an undamaged condition. In the herein introduced fail-
safe design strategy, a design concept of a substructure with damage accumulating function is
developed, assuming that if this substructure is integrated within a system of coupled substructures
it will hinder the progress of the failure mechanism towards crucial structural elements.

For numerical efficiency reasons, the presented fail-safe design optimization task can be solved
within a two-step procedure involving: (i) the design optimization of the whole structure and
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(ii) the subsequent detailled design of the damage accumulating element. The multi-objective
design optimization task of the whole structure, solved in the first step, includes objective functions
evaluated in an undamaged condition of the structure, e.g. minimal mass, deformations, production
costs as well as in the damaged condition, focusing on obtaining an intended failure path/mode,
which ends up in the damage accumulating element. In the second step of the fail-safe design
procedure, the design optimization of the damage accumulating element is accomplished, with the
initial design configuration identified within the first procedure step. Various loading cases and
boundary condition changes of the damage accumulating element are taken into account, which are
identified in the analysis of failure modes within the optimization of the whole structure.

The occurrence of a particular failure mode involves a dysfunction of specific substructures,
joints or structural members, which are merged to the damage accumulating substructure. The
resulting boundary condition changes within the damage accumulating substructure in form of
support removal, support displacement or additional loads, lead to stress concentration and may
provoke crack nucleation. In order to hinder possible crack propagation, structural elements in form
of crack arresters are introduced within the damage accumulating substructure. In this contribution,
the second step of the fail-safe design procedure is of main interest and thus a novel concept for
the design of the damage accumulating substructure is provided.

For the structure mechanics based design optimization of the damage accumulating substructure,
this substructure is considered as a body in the Euclidean space B ∈ E 3, surrounded by the
boundary Γ, as shown in Figure 1. The body is subjected to body forces b and surface tractions t,
which are assigned to the part ΓF ∈ Γ. At the part Γb ∈ Γ, displacement boundary conditions are
prescribed. The body includes an initial crack of length γin, which arises in consequence of local
stress concentrations induced by the occurrence of a failure mode. The controlling of partial damage
in form of crack propagation and hindering its escalation to further structural components is ob-
tained by the application of crack arresters. In the investigated damage accumulating substructure,
nc crack arresters are assembled, each with a boundary ΓAi, i = 1, ..., nc and a geometrical position
vector χAi defined with respect to the reference point P ∈ B. In Figure 1, the body B with a single
crack arrester is presented as an example.
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Figure 1. Structure mechanical configuration of the damage accumulating substructure.
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The nonlinear multi-objective optimization problem of the damage accumulating substructure
is defined as

min
xd∈X⊂Rn

f(xd, p̃a) = {f1(xd, p̃a), f2(xd, p̃a), ...fi(xd, p̃a), ..., fm(xd, p̃a)} ,

fi(xd, p̃a) = K (γ̃cr(xd, p̃a,F))

subject to GM (xd, p̃a) = ∇X ·Σt + B = 0 (1)

gk(xd, p̃a) ≤ 0 k = 1, 2, ..., p,

hl(xd, p̃a) = 0 l = 1, 2, ..., q.

The major optimization objective of the optimization task in Eq. (1) focuses on the identification
of the geometrical configuration χAi of the crack arresters, so that the uncertain crack propagation
γ̃cr(xd, p̃a,F) is always limited by the crack arrester. Within the definition of the major optimization
objective fi(xd, p̃a), K represents a function utilized for the quantification of the uncertain crack
propagation γ̃cr, which will be discussed in Section 4. Further objective functions can be considered
as well.

In Eq. (1), the objective functions fi, (i = 1, 2, ...,m) evaluate two types of input parameters,
the design variables xd and the uncertain a priori parameters p̃a. They are represented by an n-
dimensional design vector xd = {xd 1, xd 2, ..., xdn}T and the s-dimensional vector of uncertain a

priori parameters p̃a = {p̃a 1, p̃a 2, ..., p̃a s}T respectively. In the presented optimization problem,
hl(xd, p̃a) = 0 denote nonlinear equality constraints and gk(xd, p̃a) ≤ 0 inequality constraints.

Due to the fact, that the major objective function considered in Eq. (1) evaluates the uncer-
tain crack propagation function γ̃cr(xd, p̃a,F), the fracture mechanical analysis is applied for the
solution of the optimization task. The crack propagation is governed by the energy minimization
method on the basis of the configurational forces F . The configurational forces are derived from
the material momentum balance equation GM and then applied for the energy minimization prin-
ciple to determine the crack growth direction, compare (Özenç and Kaliske, 2014). The material
balance equation GM evaluates forces acting on material inhomogeneities of continuous media in
the material space, compare (Eshelby, 1951), (Eshelby, 1975) and (Steinmann, 2000), in contrast
to the balance laws formulated in the framework of classical Newtonian mechanics, which involve
physical forces. The forces considered within GM are denoted as configurational or material forces
and defined as thermodynamical driving forces. In the optimization task in Eq. (1), the material
balance equation GM yielding the material forces is introduced as an optimization constraint.
Thereby, GM considers a stress measure conjugate to the material forces F , the Eshelby stress
tensor Σ as well as the material body force B.

In subsequent sections, various aspects of the optimization task are discussed, as the formulation
of the uncertain parameters related to crack initiation and growth and the definition of the objective
functions. Finally, a solution concept for the presented fail-safe design optimization problem is
provided.
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3. Uncertain Crack Initiation and Propagation in Fail-Safe Structures

An important aspect of a fail-safe design strategy is the assessment of potential crack initiation
location as well as the prediction of the crack propagation image, taking into account the uncertain-
ties in the fracture processes. A major assumption of the introduced fail-safe design optimization
approach is, that in a system with coupled substructures, the crack initiation location in the
damage accumulating substructure is uncertain but not random, since it results from the boundary
conditions change induced by the occurrence of a certain failure mode and failure of particular
neighbouring structural elements. Thus, the nature of the crack initiation process in the context
of safe failure of structures designed as a system of coupled substructures differs significantly from
e.g. fatigue induced failure of independent systems, which is governed by the crack initiation at
randomly distributed material inhomogeneities.

The crack initiation in the damage accumulating substructure is visualized in Figure 2. For
the considered body B, the boundary Γb with prescribed displacement boundary conditions is
divided into three parts Γb1, Γb2, Γb3, whereas each part denotes a support or joint connecting
B with neighbouring structural elements. Should the structure fail according to the first planned
failure mode, the failure of support/joint associated with Γb1 within the damage accumulating
substructure is expected. Thereby, the consequence of the removal of the boundary part Γb1 is the
crack initiation at a position in body B, which is shown in Figure 2 b). The most possible crack
initiation location is marked with the black color and the crack initiation locations with gradually
decreasing occurrence possibility are indicated by shading in the gray scale. Though, the occurrence
of the second planned failure mode, provokes the removal of boundary Γb2 and the uncertain crack
initiation in a quite different part of the body B, compare Figure 2 c). For the description of the
crack initiation phenomena, the framework of the possibility theory is chosen.

The framework of the fuzzy set theory yields mathematical foundations for the theory of possi-
bility (Dubois and Prade, 1980), (Zadeh, 1965). Especially, the fuzzy set theory based uncertainty
model fuzziness is applicable if incomplete, limited statistical or subjective information is evaluated.
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Figure 2. Crack initiation due to the boundary change.
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Figure 3. Definition of a fuzzy variable.

Since the information required for modelling the crack initiation position as an uncertain parameter
is based on vaque data and/or stems from expert evaluations, its modeling by means of fuzzy sets
is reasonable. The fuzzy set Ã is defined as

Ã = {(x, µA (x)) | x ∈ X} . (2)

The gradual membership of the elements x ∈ X to the fuzzy set Ã is specified by a membership
function µA, as visualized in Figure 3 a)

µA : X → [0, 1]. (3)

The definition of the crack initiation position as a fuzzy set requires the assessment of a set
of material points in a subregion of the body XB ⊆ B according to the crack initiation potential.
The gradual assessment suceeds by means of the membership function µA, compare Figure 3 b). In
order to provide an interpretation in the context of the possibility theory, a possibility measure Π in
the measure space [XB,Σ,Π] is assumed, with Σ as the σ-Algebra on XB. Thereby, the possibility
measure Π denotes a subjective assessment of the possibility of the occurrence of an event, which
is e.g. defined by the crack initiation at a particular point x ∈ XB. Consider a variable p̃a taking
values in XB, which is characterized by the possibility distribution function πd (p̃a). Thereby, πd (p̃a)
is defined to be equal to the membership function µA of the set Ã

πd (p̃a) = µA. (4)

Thus, an advantageous description of the crack initiation event is obtained since every realization
x of the fuzzy variable p̃a is quantified by the possibility measure Π and has an assigned degree of
possibility µA (x).
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The herein presented fail-safe design procedure is based on the solution of the multi-objective
optimization task, where the objective functions fi(xd, p̃a), i = 1, ...,m evaluate uncertain input
parameter, e.g. the uncertain crack initiation location. Especially, within each objective function
fi(xd, p̃a), i = 1, ...,m considered in Eq. (1), a mapping of a design vector xd, and uncertain
parameters vector p̃a onto uncertain structural responses z̃i = fi(xd, p̃a) is accomplished by means
of the fracture mechanical analysis

fi : Rn × U(Rs) → U(R), (5)

(xd, p̃a) 7→ z̃i.

In Eq. (5), U(·) stands for the set of all fuzzy sets, defined respectively, on the space of uncertain
parameters U(Rs) and on the objective space U(R) ∈ Rm. Rn denotes the space of design variables.
The outputs of the objective functions fi(xd, p̃a), i = 1, ...,m are uncertain structural responses
z̃i ∈ U(Rm), i = 1, ...,m in form of fuzzy sets. The generation of z̃i is accomplished by means of
the fuzzy analysis on the basis of the α-level optimization (Möller et al., 2000) and involves the
discretization of both, the fuzzy input parameters p̃a and fuzzy responses z̃i into crisp sets Sα(p̃a)
and Cα(z̃i)

Sα(p̃a) = {x ∈ R : µA ≥ α} , (6)

p̃a = (Sα(p̃a))α∈(0,1]. (7)

z̃i = (Cα(z̃i))α∈(0,1] . (8)

The uncertain structural responses z̃i can be obtained as fuzzy numbers or may exhibit time τ and
space θ dependency and, thus, be characterized by uncertain functions in form of fuzzy processes
z̃i (τ) , τ ∈ T = R4 and fuzzy fields z̃i (θ) , θ ∈ T . The structural response, which is of main interest
in this work is the uncertain crack propagation obtained as a fuzzy curve. According to the α-level
discretization, the fuzzy crack propagation curve γ̃cr is defined by sets Cα(γ̃cr) of trajectories γcr

γ̃cr = (Cα(γ̃cr))α∈(0,1] ; Cα(γ̃cr) =
{
γcr ∈ E 3 : µz ≥ α

}
. (9)

Each trajectory γcr is equivalent to a deterministic realization of the uncertain propagation curve
and corresponds to a deterministic fracture image, compare Figure 4. The set Cα(γ̃cr) assembles
trajectories, which have at least the assigned membership µz ≥ α. In addition, every deterministic
crack propagation γcr can be assessed with respect to the possibility of occurrence πd = µz. Each
trajectory γcr is defined as a set of nθ points θic in the body B

γcr =
{
θ1
c ; ...,θ

i
c, ...,θ

nθ
c | θic = [θ1, θ2, θ3] ∈ B

}
, (10)

where the identification of the point θi+1
c , subsequent to the point θic, is based on the computation

of the material force vector F .
For the uncertain crack propagation γ̃cr, the bounding curves γ̃

b
cr, γ̃bcr, which envelope all

trajectories γcr, may be specified

γ̃bcr = min
θZijc |j

[γcr | γcr ∈ Cα=0(γ̃cr)], (11)
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γ̃bcr = max
θZijc |j

[γcr | γcr ∈ Cα=0(γ̃cr)]. (12)

In Eq. (11) and (12), θZij
c stands for a position vector projected from the three-dimensional Eu-

clidean space E 3 with dimensions denoted by i, j, k ∈ {1, 2, 3} | i 6= j 6= k onto two-dimensional
Euclidean space E 2 with dimensions i, j. The bounding curves indicated by black dashed line in
Figure 4, are evaluated within the fail-safe design optimization procedure.
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Figure 4. Fuzzy crack propagation curve.

4. Fail-Safe Design Optimization

In the following, the solution of the fail-safe optimal design problem, which is formulated as a the
multi-objective optimization task with uncertain (fuzzy) parameters is presented. Since ordering of
the objective function outputs is an inherent function of every optimization procedure, the order
relations for the uncertain structural responses z̃i, z̃i (τ), γ̃cr need to be developed. The herein
applied order is based on the application of the information reducing measures Mj : U (R) → R,
(Serafinska et al., 2013), (Graf et al., 2010), (Sickert et al., 2009).

Due to the utilization of information reducing measuresMj and the application of the scalariza-
tion approach for the multi-objective optimization problem in form of the weighted sum method,
the objective function vector f(xd, p̃a) in Eq. (1) turns to

f(xd, p̃a) =

k∑
i=1

l∑
j=1

wijMj (z̃i) +
m−1∑
i=k

u−1∑
j=l

wijKij (Mj (z̃i (τ))) + wmuKmu (Mu (γ̃cr)) , (13)
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where z̃i = fi(xd, p̃a) and wij are the weighting factors. In Eq. (13), the information reducing
measuresMj are applied to the uncertain structural responses obtained as fuzzy quantities z̃i, fuzzy
functions z̃i (τ) and fuzzy curves γ̃cr. Thereby, for fuzzy quantities z̃i, the measures Mj defined
as the zeroth moment, the variance or the Shannon’s entropy quantify the information content,
e.g. the uncertainty of z̃i and reduce z̃i to a crisp value (Sickert et al., 2009). The quantification
of the information content of an uncertain function/curve by means of Mj is equivalent to the
identification of deterministic representatives of the fuzzy function/curve, important for a particular
optimization objective. An example of representative curves are the deterministic bounding curves

γ̃
b
cr, γ̃bcr of the uncertain crack propagation γ̃cr shown in Figure 4

Mu (γ̃cr) =
{
γ̃bcr; γ̃

b
cr

}
. (14)

A significant fail-safe design objective is the identification of a design with an optimal position
of the crack arresters χAi, so that all trajectories γcr of the uncertain crack propagation curve
γ̃cr reach the boundary of the crack arrester ΓAi. Since all trajectories γcr of the uncertain crack

propagation curve are located between the bounding curves γ̃
b
cr, γ̃bcr, the fail-safe criterion is satisfied

if the bounding curves approach the boundary of the crack arrester. Thus, every bounding curve
must be assessed with respect to the aspired propagation direction and path. Thereby, the aspired
propagation path is defined a priori based on the assumption, that the propagation ends up at the

crack arrester, as shown in Figure 4. In Eq. (13), the coincidence between bounding curves γ̃
b
cr, γ̃bcr

and the conjugate aspired crack propagation paths ζb, ζb is quantified by the function K utilizing
the Euclidean distance metric dE

Kmu (Mu (γ̃cr)) =

nθ∑
l=1

P
[
dE

(
γ̃bcr; ζ

b
)]

+

nθ∑
l=1

P
[
dE

(
γ̃bcr; ζ

b
)]
. (15)

In Eq. (15), nθ stands for the number of discrete points θc on the bounding curve of the uncertain
crack propagation and P is the arbitrarily defined penalty function. The aspired crack curve, e.g.
ζb, is specified on the basis of the initial conditions ζb 0, which are known since they are derived
from the definition of the uncertain crack initiation point as a fuzzy quantity p̃a

ζb 0 = θ0
c ; θ0

c = min [θc | θc ∈ Sα=0(p̃a)] . (16)

Further coordinate ζb nθ of the aspired crack curve ζb is prescribed on the boundary of the crack
arrester and defined with respect to the location vector of the crack arrester χAi

ζb nθ = θnθc ; θnθc = χAi. (17)

The interpolation between points ζb 0 and ζb nθ is defined e.g. as a linear function. The aspired
crack propagation paths are indicated by a dashed red line in Figure 4. The optimization algorithm
identifies an advantageous position of crack arresters, for which the distance between the aspired
crack paths and the corresponding bounding curves of the uncertain crack propagation is minimized
and all realizations γcr reach the boundary of crack arresters.
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5. Numerical Realization

The numerical realization of the presented fail-safe design optimization concept is based upon a
three level procedure implemented as a nested loop approach, compare Figure 5. Accordingly, the
optimization constitutes the first level and the outer loop of the numerical procedure whereas the
fuzzy analysis establishes the second level and the first inner loop. Within the fuzzy analysis, the
fracture mechanical analysis in the finite element framework is executed.

The binary genetic algorithm applied at the optimization level, starts with initialization of the
first population of design vectors ξω, ω = 0, and the vector of uncertain a priori parameters p̃a.
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Figure 5. Schematic presentation of the optimization approach.
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In the course of the optimization, for each design vector xid, i = 1, ..., npop in the population ξω,
the fuzzy analysis is executed, yielding for every considered objective function fi(xd, p̃a) a fuzzy
output quantity z̃i, z̃i (τ) or γ̃cr, where i = 1, ...,m−1. The computation of fuzzy output quantities
within the fuzzy analysis involves the determination of the shape of the membership function µz and
the support ranges Cα=0(z̃i). In the present approach, the fuzzy analysis is conducted by means
of the α-level optimization procedure, introduced in (Möller et al., 2000). Thereby, the α-level
optimization for the determination of the fuzzy crack propagation curve involves the Monte Carlo
simulation. Especially, the Monte Carlo simulation is accomplished to identify the crack initiation
points. The crack propagation curves resulting from the identified initiation points are evaluated
at discrete spatial points to determine the extrema of the spatial dispersion of the uncertain crack
propagation at each α-level.

Subsequently, the uncertain responses z̃i, z̃i (τ) and γ̃cr obtained for every considered design
xid are evaluated with the function f (xd, p̃a) in Eq. (13). Since the formulation of f (xd, p̃a) is
facilitated by the information reducing measures Mj , f (xd, p̃a) yields a crisp output for a par-
ticular design xid. Obtaining of crisp outputs permits the ordering of conjugate designs within the
binary genetic algorithm. After the evaluation of the function f (xd, p̃a), the convergence criterion
is verified. If the optimal design is found, the optimization terminates, else the next design is
examined.

On the basis of the introduced coupling of the fuzzy analysis, the optimization algorithm and
the fracture mechanical analysis, the genetic algorithm learns the features of the uncertain crack
propagation and identifies the optimal configuration of the crack arresters.

6. Example

In the present example, the optimal geometrical configuration of crack arresters is determined
for a concrete panel with dimensions 50.8 x 30.32 [cm]. Thereby, the crack arresting function
is exhibited by the openings in the structure, e.g. the service pipes openings, which existence
is required anyway. The optimization aims at the identification of the location of four openings
χAi, i = 1, ..., 4, described by six design variables a, b, c, d, e, f as shown in Figure 6.

The crack arrester position vectors χAi are specified with respect to the coordinate system with
the origin in the reference point P. The considered design parameters are modelled as discrete
variables, compare Table I. The diameter D of all openings is defined by 1.27 [cm] and the
magnitude of the initial crack length is set to γin = 1.254 [cm]. In the model, a linear elastic
material characteristic is considered with the modulus of elasticity E = 38000 [MPa], Poisson’s
ratio ν = 0.18 and the fracture toughness Gc = 0.5 [N/mm].The crack initiation position θ̃cr1 is
considered as an uncertain parameter and modelled as a fuzzy triangular number, compare Figure 6
and Table I. In this example, the crack initiation is a consequence of a particular boundary change,
e.g. a removal of an additional support in the bottom of the panel, as depicted in Figure 6.

The fracture analysis is performed with a monotonic displacement based loading at constant
increments ∆dz = 0.01 [mm] on a statically determinate structure, which is obtained after the
removal of the additional support. In Figure 7, the crack propagation for the identified optimal
design at different stages of the loading and a particular crack initiation position is visualized. At
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Figure 6. Parametrization of the panel design.

the nodes of the finite element model, the material force vectors are marked, whereas the vector at
the crack tip defines the crack driving force.

The optimization accomplished by means of the binary genetic algorithm involves 20 generations
of the algorithm and the population size of 25 genomes. The fuzzy analysis is executed considering
the discretization of the fuzzy variable θ̃cr1 into two α-level sets at α = 0 Sα=0(θ̃cr1 ) and at α = 1

Sα=1(θ̃cr1 ). The evaluation of the α-level set Sα=0(θ̃cr1 ), enables to account for all possibly appearing
crack initiation locations. In addition, the proposed method permits to consider only the crack
initiation positions with highest possibility by the evaluation of the α-level sets Sα(θ̃cr1 ) with α ≈ 1.

Table I. Definition of the design variables and uncertain parame-
ters.

Design variables

interval increment unit

a [3.175, 8.255] ∆a = 2.54 [cm]

b [2.54, 5.08] ∆b = 1.27 [cm]

c [2.54, 5.08] ∆c = 1.27 [cm]

d [0.00, 10.16] ∆d = 2.54 [cm]

e [2.54, 27.94] ∆e = 5.08 [cm]

f [2.54, 10.16] ∆f = 2.54 [cm]

Fuzzy parameter

p̃a 1 = ˜θcr1 < 11.0; 16.0; 21.0 > [cm]
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a b) )

c) d)

Figure 7. Crack propagation at different stages of the computation a) − d), at applied deformation of 0.70, 0.76, 0.87
and 0.95 [mm] and the nodal material force vectors.

The α-level optimization is performed on the basis of the Monte Carlo simulation with 14 crack
initiation locations evaluated for every design. The aspired crack propagation curves are specified
as linear functions based on the points θ0

c and θnθc available for each considered crack initiation
point. The penalty function is defined as P = [dE (γcr j ; ζAi)]

3.
In Figure 8, the improvement of designs analyzed in subsequent optimization steps is visualized.

For the design evaluated in the initial optimization step, which is presented in Figure 8 a), the
disadvantageous configuration of the crack arresters implies that no crack propagation, i.e. no
realization of the fuzzy crack propagation curve can be hindered. The enhancement of the fail-
safe function is achieved for designs in Figure 8 b), c) analyzed in later optimization stages.
In the progress of optimization, the fail-safe optimal design is identified with the crack arrester
configuration limiting every crack growth determined by the fuzzy analysis. The optimal design,
visualied in Figure 8 d), is characterized by the design variables configuration a = 8.26, b = 3.81, c =
5.05, d = 0.00, e = 17.78, f = 5.08 [cm] and the corresponding crack arrester position vectors
χA1 = [17.78, 8.26] , χA2 = [17.78, 12.06] , χA3 = [17.78, 17.14] , χA4 = [22.86, 8.26] [cm]. The FE
models associated with the design configurations evaluated in the optimization are depicted in
Figure 8 as well. Thereby, FE models with only one of the considered crack initiation points are
visualized.
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Figure 8. Fuzzy crack propagation curve for designs in subsequent generations of the optimization algorithm.
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7. Conclusions

In the present contribution, a method for a fail-safe design optimization is presented, which is
numerically realized as a coupled approach of optimization, fuzzy analysis and fracture mechanical
analysis. For the investigations on safe failure, the uncertainties within the crack initiation and
growth process are analyzed. The modelling of nonstochastic properties of the uncertain crack
initiation position in a substructure belonging to the system of coupled substructures, succeeds by
the application of the fuzzy set theory and the possibility theory framework. By taking into account
the possibility of the occurrence of diverse crack propagation paths, the optimal configuration of
the crack arresters can be identified in a systematic way by means of the genetic algorithm based
design optimization procedure. The introduced approach enables the improvement of the prevention
from undesired crack growth and damage escalation as well as contributes to the enhancement of
structural durability and safety.
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