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Abstract: Due to nature, uncertainties are inherently present in structural parameters such as
loadings, boundary conditions or resistance of structural materials. Especially material properties
and parameters of wood are strongly varying in consequence of growth and environmental condi-
tions. The considered uncertainties can be classified into aleatoric and epistemic uncertainty. To
include this variation in structural analysis, available data need to be modelled appropriately, e.g.
by means of probability and furthermore fuzzy probability based random variables or fuzzy sets.
Therefore, a limited empirical data basis for Norway spruce, obtained by experiments according
to DIN EN 408, is stochastically analysed including correlation, sensitivity analyses and statistical
tests. In order to comprehend uncertainties induced by estimating the distribution parameters,
the stochastic approach has been extended with fuzzy distribution parameters to fuzzy probability
based random variables according to (Möller and Beer, 2004; Möller et al., 2000). To cope with
epistemic uncertainties for e.g. geometric parameters of knotholes, fuzzy sets are used. The con-
sequence for wooden structures is determined by fuzzy stochastic analysis (Götz et al., 2015) in
combination with a FEM simulation using a model suitable for characteristics of a timber structure
by (Jenkel and Kaliske, 2014). The uncertain results (e.g. displacements, failure loads) constituted
by the proposed holistic approach – defining the material properties based on an empirical data
basis and the attempt of representing the uncertainties in material parameters and methods itself
– will be discussed in terms of further processing in engineering tasks.

Keywords: polymorphic uncertainty, fuzzy randomness, stochastic modelling, wood mechanics,
structural analysis

1. Introduction

Wooden structures underlie a fundamental data uncertainty in every engineering related matter.
The material parameters of wood are strongly varying due to the natural growth and environmental
conditions even within small pieces of wood. These aspects hold especially true for the material
parameters defined at a macroscopic level like the elasticity moduli and material strengths consid-
ered in this contribution. The reason for the variation at the macroscopic level might be found in
the anatomical structure of wood including the cellular level. To incorporate these characteristics,
wood can be described on the mesoscale including the growth layer dependent spatial variability of
material parameters, see e.g. (De Amicis et al., 2011), or even on a micro and nanoscale, see (De
Borst et al., 2013). However, the material parameters on the nano and microscale are naturally
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varying themselves. Regarding the design of timber structures according to EN 1995 (2010), global
engineering material parameters are applied including further structural uncertainties e.g. in fibre
orientation and knot hole size as well as distribution. Despite those uncertainties, it becomes
necessary to assess the capabilities of a structure as well as characteristic variables for construction
and design purposes. Methods for consideration of uncertainties in design of timber structures by
means of randomness have been presented amongst others in (Fink and Köhler, 2014; Jenkel et al.,
2015; Köhler et al., 2007; Spaethe, 1992).

In general, uncertainty can be classified into aleatoric and epistemic uncertainty. The combina-
tion of both yields polymorphic uncertainty, see e.g. (Götz et al., 2015). The first type includes e.g.
the variations of material properties based on repetitive material tests. Due to a given amount of
test results, the uncertainties can be represented by means of randomness, which in general satisfies
statistical laws and possess a quasi objective information content. In this contribution, experiments
performed on small specimens made of Norway spruce according to European standards are used
as data basis. Epistemic uncertainties encounter non-statistical properties, information deficits and
subjective influences. According to (Möller and Beer, 2004), epistemic uncertainties are further
divisible into informal and lexical uncertainties. In this approach, geometric dimensions, knothole
sizes and positions are defined as fuzzy sets according to the fuzzy set theory of (Zadeh, 1965).

Especially for insufficiently large observations, a statistical evaluation free of doubt is hard to
constitute. Therefore, the use of fuzzy probability based random variables (fp-r), see (Götz et al.,
2015; Pannier, 2011; Pannier et al., 2013), is proposed in order to encounter the uncertainty within
the determination of stochastic parameters as well as representing the range of the response for
deterministic fundamental solution. To approximate solutions of FE simulations, and analytical
functions, artificial neural networks are hereby used as deterministic fundamental solution. To
evaluate polymorphic uncertainty with respect to a wooden structure, a fuzzy stochastic analysis
according to (Götz et al., 2015; Möller et al., 2007) is a valid approach, which yields to more realistic
but uncertain result quantities.

This contribution is divided into five main sections. Firstly, a brief overview of mathematical
fundamentals is given, regarding randomness, fuzziness and fuzzy randomness. The computational
analysis procedure is explained as well. Approaches to model fuzzy distribution parameters for
fuzzy probability based random variables are introduced. Hereafter, the data basis gathered from
multiple experiments is presented together with the appropriate fp-r variables. Subsequently, a
fuzzy stochastic analysis is applied on a wooden structure including knotholes.

2. Introduction of Uncertainty Models

The utilized uncertain structural analysis includes both, stochastic and fuzzy analysis. Therefore,
the mathematical basis for each concept of uncertainty is introduced including the description of
polymorphic uncertainty by means of fuzzy randomness.
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2.1. Uncertainty models

In order to derive a numerical model for an adequate consideration of uncertainty, it is proposed to
extend the common approach of stochastic modelling, used e.g. for material parameters, to fuzzy
probability based random variables. Therefore, the fundamentals of randomness, fuzziness, covering
epistemic uncertainty of e.g. geometric dimensions, and fuzzy probability based random variables
are hereafter introduced, to incorporate the source and nature of present uncertainties.

2.1.1. Randomness
A random variable X is defined by the mapping X : Σ→ R fulfilling the condition

∀I ∈ B(R) : X−1(I) := {ω ∈ Ω | X(ω) ∈ I} ∈ Σ , (1)

whereas Ω correspondents with the set of elementary events ω, Σ is a σ-Algebra and P is the
probability measure, satisfying the probability axioms of Kolmogorov. The observation space
is represented by (R,B(R)) including the Borel-σ-Algebra B(R). If X complies to the condition
Eq. (1), an associated probability measure PX is furthermore defined as

PX : B(R)→ [0, 1] : I 7→ PX(I) = P (X−1(I)) . (2)

The underlying distribution of the random variable X can be expressed by the cumulative distri-
bution function FX (cdf) and its derivative called probability density function fX (pdf) for which
holds

FX(x) =

∫ x

−∞
fX(t)dt . (3)

Based on the assumption that fX is continuous, the probability of an interval I = [xl, xr] is related
to FX as follows

PX(I) = FX(xr)− FX(xl) . (4)

The probability distribution of random variables is usually described by means of parametrized
distributions FX(x, θ). Common distribution types as the Normal or Log.-Normal distribution
will be further represented as parametric model with respect to suitable distribution parameters θ.

2.1.2. Fuzziness
Considering a precise set A ⊆ R, the characterizing function ξ(·), in terms of precise sets also called
indicator functions (Viertl, 1996), is defined by

ξA : R→ {0; 1}, x 7→:

{
1, x ∈ A
0, x /∈ A . (5)

Due to the imprecision of measurements, it becomes obvious that the definition of interval bound-
aries in this precise manner is a simple approach and not very realistic. Subsequently, the definition
of precise sets has been enhanced to non-precise sets. For reasons of distinction, the characterizing
function ξ(·) for non-precise data will be further expressed as membership function µ(·) allowing

REC 2016 - F. Leichsenring, W. Graf and M. Kaliske

161



F. Leichsenring, W. Graf and M. Kaliske

an assessment of the membership to an domain between [0, 1]. A fuzzy set Ã can be expressed as
set of ordered pairs

Ã = {(x, µÃ(x)) | x ∈ X,µÃ(x) ≥ 0} . (6)

To highlight the transformation from precise sets A to uncertain sets in R, fuzzy sets will be further
referred to as Ã. The fuzzy set Ã can also be referred to as a fuzzy number x̃, see (Möller and Beer,
2004). The membership function µ(·) of an uncertain variable is a real function of a real variable
with the following properties

µ : R→ [0, 1] , (7)

∃ x0 ∈ R : µ(x0) = 1 , (8)

Aα := {x ∈ R | µÃ(x) ≥ α} = [aα, bα] , (9)

where the finite closed interval Aα is called α-cut of µ(·) (Zadeh, 1971). The α-cut A0 is called
support of Ã. In this contribution, only convex fuzzy numbers according to (Möller and Beer,
2004; Pannier, 2011; Pannier et al., 2013) are considered. With respect to Eq. (9), all utilized fuzzy
numbers are represented as either fuzzy triangular number

x̃ = 〈a0, x0, b0〉 , (10)

or fuzzy trapezoidal interval number

x̃ = 〈a0, a1, b1, b0〉 . (11)

Both types of fuzzy numbers are illustrated in Fig. 1.

x

a    x      b0 0    0 a     a  b     b0 1    1 0

1

0

μ(x)

x

1

0

μ(x)

Figure 1. Fuzzy number x̃ as triangular and trapezoidal interval number.

2.1.3. Fuzzy randomness
The definition of fuzzy probability based random variables (fp-r) is founded on the assumption
that the probability distribution of a random variable X according to Eq. (2) cannot be described
exactly due to a lack of information, see e.g. (Götz et al., 2015; Pannier, 2011; Pannier et al., 2013).

Thus, a fuzzy probability distribution and a fuzzy probability space (Ω,Σ, P̂ ) can be introduced.

The fuzzy probability P̂ is represented as family of α-cuts

P̂ = (Pα)α∈(0;1] . (12)
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Each event A ∈ Σ is related by Pα to an interval [Pα,l(A);Pα,r(A)] for all α ∈ (0, 1] such that the
following condition is fulfilled

0 ≤ Pα,l(A) ≤ Pα,r(A) ≤ 1 . (13)

A fuzzy probability based random variable X is defined by the mapping of the fuzzy probability
space onto the observation space X : Ω→ R. The fuzzy probability distribution P̂X is formulated
as family of mappings P̂X = ((PX)α)α∈(0;1], with

(PX)α : B(R)→ {[l, r] | 0 ≤ l ≤ r ≤ 1} : (14)

I 7→ Pα(X−1(I)) = [Pα,l(X
−1(I)), Pα,r(X

−1(I))] . (15)

The fuzzy probability distribution might be represented by a fuzzy cumulative distribution function
F̂X , which is again defined as family of α-cuts

F̂X = ((FX)α)α∈(0,1] (16)

(FX)α = {G : R→ [0, 1] cdf | ∀x ∈ R : (17)

Pα,l
(
X−1((−∞, x])

)
≤ G(x) ≤ Pα,l

(
X−1((−∞, x])

)
} , (18)

with an arbitrary cumulative distribution function G(x). Each G ∈ FX is an original of F̂X .
The applied cumulative distribution function G is usually defined by distribution parameters θ
in terms of G(x, θ). Then, the fuzzy cumulative distribution function F̂X can be described with
fuzzy distribution parameters θ̃ = (θα)α∈(0,1]. For example, a two parametric distribution function
with parameters θ1 and θ2 yields

F̂X = ({Fθ1×θ2 | θ1 ∈ θ̃1,α, θ2 ∈ θ̃2,α})α∈(0,1] . (19)

This formulation is referred to as bunch parameter representation, since the fuzzy cumulative
distribution and the fuzzy probability density function can be considered as assessed bunches of
functions which are described by bunch parameters θ̃.

2.2. Uncertain structural analysis

According to (Möller and Beer, 2004; Pannier, 2011), the so-called fuzzy stochastic analysis type
I is utilized, in which the bunch parameter representation of fuzzy random variables is used. The
general workflow is constituted in a three-loop computational model.

Initially, each input parameter Xi with i = 1, . . . , n is represented by a fuzzy distribution accord-
ing to Eq. (19), where each distribution type is determined individually for each input dimension,
see Section 3. The fuzzy analysis, performed in the outer loop, implies the α-discretization. A crisp
space

θi,α = {θi ∈ θ̃i | µθ̃i(θi) ≥ α} ⊂ R2 (20)

is obtained for each α-level, carried out on θ̃i = (θ̃1,i×θ̃2,i). Evidently, every set of bunch parameters
θi is associated with a trajectory Fθi(x), see Fig. 2. In the inner loop of the computational model,
for each trajectory a stochastic analysis is performed, which concludes, in combination with a given
deterministic fundamental solution fZ : Rn → Rm, to an empirical distribution F̄j(z) for each
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142 4 Material inhomogeneities

stochastic analysis Type II is applied, where the fuzzy analysis is carried out within
the stochastic analysis. Subsequently, the fuzzy stochastic structural analysis Type I
utilized in this work is explained.

Figure 4.31: Fuzzy stochastic structural analysis Type I [105]

The fuzzy stochastic vector X = (X1, X2, . . . , Xn) ⊂ Rn containing n fuzzy random
input parameters is mapped onto m fuzzy stochastic results Z = (Z1, Z2, . . . , Zm) ⊂
Rm. Each input parameter Xi with i = 1, . . . , n is represented by its fuzzy cumulative
distribution and probability density function

F̂Xi =
({
Fθi | θi ∈

(
θ̃i

)
α

})
α∈(0,1]

f̂Xi =
({
fθi | θi ∈

(
θ̃i

)
α

})
α∈(0,1]

(4.69)

and the related bunch parameters θ̃i. The fuzzy bunch parameters θ̃i are discretized
by α-levels α ∈ (0, 1] as already shown in Fig. 4.21. For each α-level, a crisp space

θi,α =
{
θi ∈ θ̃i |µθ̃i (θi) ≥ α

}
⊂ Rnθi (4.70)

is obtained, whereas nθi represents the number of bunch parameters per input variable.
The membership function µθ̃i(θi) is determined according to Eq. 4.17 with θi = {θi,1×
θi,2 × . . .× θi,nθi}. From the deterministic space, a point can be picked containing a
deterministic set of bunch parameters θi ∈ θi,α, see Fig. 4.32. With this point, one
trajectory Fθi(x) is determined and a real random variable Xθi ∈ Xi is described.

Figure 4.32: Fuzzy stochastic structural analysis: α-level discretization of bunch parameters
and description of input variables by trajectories [105]

Figure 2. Trajectory regarding θα (Möller and Beer, 2004).

result set Zj with j = 1, . . . ,m. To map the results at the appropriate α-level, it becomes necessary
to condense the empirical distribution F̄ (z) to a representative scalar value σ. As information
reduction method, any descriptive statistical evaluation parameters such as standard deviation,
mean, median, quantiles etc. are conceivable for this task. In order to determine the bounds of
the associated α-level cut, a so-called α-level optimization (Möller et al., 2000) is necessary to
be carried for the computation of {σmin,α, σmax,α} as illustrated in Fig. 3. Conclusively, the fuzzy
result variable σ̃ is used to represent the uncertain results of the chosen information reduction
method. Therefore, the choice of method should be related to the problem under investigation and
considered in the final interpretation of the gained results.

Figure 3. Distribution of z, representation with two reduction measurements (Möller and Beer, 2004).

3. Data Modelling

Since the proposed procedure of uncertain analysis is founded on fp-r variables for material parame-
ters of wood, elements of statistics are necessary to determine stochastic parameters. Additionally,
two approaches for modelling fuzzy distribution parameters as either triangular or trapezoidal
interval numbers are introduced, whereas both methods base on the statistical evaluation of a
given dataset.
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3.1. Elements of mathematical statistics

To transform given test results into a distribution function, methods of inductive statistics are
necessary. There are four distribution types considered in this contribution all of which are two-
parametric such as FX(θ1, θ2). Beside the common Normal and Log.-Normal distribution, two
extreme value distributions, Gumbel and Weibull, are considered. Point estimators are used
to determine the distribution parameters. Methods of Moments (MoM) as well as Maximum-
Likelihood Estimation (MLE) apply for the most common point estimation procedures (Köhler
et al., 2007). The MoM is used since initial investigations revealed that especially for a small
sample size of data the more robust MoM is sufficiently accurate considering the general variance
within the data set itself.

The determination of a probability distribution function based on a given test results will be
shown for the elasticity modulus in tangential direction Et and is initially based on 45 test samples
Et. An examination with the boxplot detects potential outliers (1.5·inter quartile range), see (Frigge
et al., 1989). In order to determine the distribution parameters, the empirical mean value m̄(Et)
and empirical standard deviation σ̄(Et) will be used.

For a real-valued continuous functions f(x), the n-th moment is determined according to (Spaethe,
1992)

µn =

∫ ∞

−∞
(x− c)nf(x)dx . (21)

The mean value µ of f(x) is equal to the first moment (with c = 0) and the variance σ2 satisfies
the second moment if c = µ (central moment). The moments depending on the parameters θ1, θ2
can be expressed as

µ1 = g1(θ1, θ2)

µ2 = g2(θ1, θ2) . (22)

The MoM defines the empirical moments m̄, σ̄2 equal to the moments µ1, µ2 of true distribution
with the result that the equation system

m̄ = g1(θ̂1, θ̂2)

σ̄2 = g2(θ̂1, θ̂2) (23)

leads to the parameter estimations θ̂1, θ̂2 for θ1, θ2. For continuous functions, the estimators based
on the MoM fulfil the following properties, such as consistency

lim
n→∞

P (|θ̂ − θ| > ε) = 0 , ∀ ε > 0 , (24)

as well as being asymptotically unbiased

lim
n→∞

E(θ̂) = θ . (25)

To test the conformity of the empirical distribution with an assumed distribution type, two statisti-
cal tests are performed, see e.g. (Rinne, 2008; Viertl, 1997), the Kolmogorov-Smirnov test (KS)
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and the χ2-test with focus on the KS test due to the sample size of n∗ = 44. Both statistic tests
belong to the category ”Goodness of fit”, which determines how well an empirical distribution suits
a hypothetical distribution function. The KS test is based on the maximum difference between
an empirical and hypothetical cumulative distribution, with the given Kolmogorov-Smirnov
statistic for the null-hypothesis H0 : Fn(x) = F0(x) for a continuous probability distribution

Dn = sup
x
|Fn(x)− F0(x)| . (26)

The critical value of the maximum difference with respected to the significance level α is approxi-
mately (for n ≥ 35)

cα =

√
ln( 2

α)
√

2n∗
, (27)

hence the null hypothesis will be rejected if Dn > cα (Messay, 1951). Therefore, F0(x) can be as-
sumed as the underlying distribution function for the empirical distribution with a certain sureness
based on α, see Fig 4(b). The chosen criteria for rejecting the null hypothesis with the χ2-test is
the p-value χ2

p of the χ2-test statistic (Sellke et al., 2001). If χ2
p < α, the hypothetical distribution

is rejected.

Table I. Distribution parameters for Et.

Gumbel Log.-Normal Normal Weibull

KS (c0.05) 0.2047 0.2047 0.2047 0.2047

KS (Dn) 0.0862 0.0670 0.1412 0.1357

χ2 (p-value) 0.8364 0.8367 0.5893 0,5036

parameter 1 a = 0, 0356 µu = 5, 6886 µ = 297, 63 θ = 312, 90

parameter 2 b = 281, 45 σu = 0, 1203 σ = 35, 937 k = 9, 9617

As Table I shows, neither of the four distribution types is declined by both statistical tests, which
yields to the assumption that all of the distributions are valid approximations for the test samples.
Since the maximum absolute difference between the Log.-Normal distribution and the empirical
distribution is the lowest, a Log.-Normal distribution (σu, µu, see Tab. I) can be considered as
best fitting for Et. The four distribution types, represented by the probability density functions
(parameters see Tab. I) are shown in Fig. 4(a) with the relative frequencies of x ∈ Et. The small
positive skewness of the histogram might lead to the preference of the Gumbel and Log.-Normal
distributions by the statistical tests.

3.2. Principles of modelling the fuzzy probability based random variables

Since multiple admissible distributions exist to describe an empirical distribution, it is likely that
the chosen point estimators are not the most accurate way to determine the distribution parameters
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Figure 4. All admissible distributions for Et and the best fitting distribution within KS limits for α = 0.05.

with respect to the uncertainty in the data. To define the bunch parameters of any chosen two-
parametric fuzzy random based random variable

FX = ({Fθ1×θ2 | θ1 ∈ θ̃1,α, θ2 ∈ θ̃2,α})α∈(0,1] , (28)

for α = 0 and α = 1, one of the following methods is used. A common approach for α = 0 is based
on interval estimation of a parameter θ. Assuming θ can vary within a defined confidence interval
[ϑmin, ϑmax]

Pθ(ϑmin < θ < ϑmax) = (1− α) , (29)

a set of the minimum and maximum values of parameters, according to the confidence level (1−αs)
might be used describing a set of distribution functions, see e.g. (Viertl, 1997). According to Eq. (28)
and (29), the bounds of the support are defined as follows

θ0,l = ϑmin (30)

θ0,r = ϑmax . (31)

As described, one fuzzy parameter must hold {∃ ϑ0 ∈ θ̃ | µθ̃(ϑ0) = 1}. To obtain a so-called fuzzy
triangular number, point estimators such as MLE, MoM are appropriate to gain ϑ0. Therefore, the
uncertain parameter will be further expressed as

θ̃(·) = 〈ϑmin, ϑ0, ϑmax〉(·) . (32)

Considering any point estimation of stochastic parameters for an empirical distribution with low
sample sizes, it becomes obvious that this definition is accompanied by uncertainty as well. Con-
sequently, an alternative definition to the one previously propagated must be found for input
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dimensions with higher sensitivity relative to the investigated output dimension. Therefore, the
error made by the point estimation has to be taken into account. Under the assumption that an
admissible distribution type FX(θ1, θ2) fits the data set X, a sufficient amount of n > 106 samples

x̄ ∈ X̄, P (X̄) = FX(θ1, θ2) , (33)

should substitute the entire data set. To determine the deviation of the admissible parameter set
from the actual provided data, the variation of mean and standard deviation of an extended original
data set is computed with

X∗i = X ∪ {x̄i} ∀ x̄i ∈ X̄ , i = {1, . . . , n} , (34)

µi = E[X∗i ] , (35)

σi =
√

Var[X∗i ] . (36)

Hence, µµµ∗ = [µ1, . . . , µn] as well as σσσ∗ = [σ1, . . . , σn] are two data sets containing the deflections
of the first and second statistical moments. Concerning the longitudinal stiffness El, whereas the
Weibull distribution can be considered as admissible, the distribution of the extended mean values
(see Eq. (35)) is shown in Fig. 5(a). To evaluate the imprecision, the empirical quantiles µq5 and
µq95 are chosen. With the same empirical quantiles of σσσ∗ and the MoM, two parameter sets can be
obtained

MoM :

{
(µq5 , σq5) → (ϑ1,min1 , ϑ1,min2)
(µq95 , σq95) → (ϑ1,max1 , ϑ1,max2)

. (37)

Consequentially for each distribution parameter, a fuzzy trapezoidal interval number such as

θ̃(·) = 〈ϑmin, ϑ1,min, ϑ1,max, ϑmax〉(·) (38)

can be defined, whereas each α-cut A1 is bounded by the corresponding distribution parameters
in Eq. (37). The procedure is applied on material parameters of wood in Section 4. To observe the
convergence properties, the fitting of admissible distribution parameters is performed on increasing
samples size nS for an arbitrary data set. In Fig. 5(b), a normalized error

κ(·) =
(q(·) − E[µ∗])

E[µ∗]
(39)

in relation to nS is shown. Hence, based on the condition that for large nS an admissible function
exists, the following applies

lim
nS→∞+

κ(·) = 0 , (40)

as Fig. 5(b) illustrates. In terms of fuzzy numbers for stochastic parameters it yields ϑ1,min =
ϑ1,max = ϑ0, whereby the fuzzy trapezoidal interval is reduced to a fuzzy triangular number.
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Figure 5. Exemplary distribution of µµµ∗ (based on El) and convergence behaviour of κ(·) related to increasing nS .

4. Parameter Modelling and Data Basis

The introduced methods are applied to model the uncertainty of material parameters of wood
subsequently. The mechanical behaviour of the anisotropic material wood differs significantly in
the material directions radial r, tangential t and longitudinal l and strongly depends on the type
of loading like tension t, compression c and shear loading v. In the structural analyses presented
below, macroscopic material parameters taking into account these dependencies are utilized. The
material parameters and their uncertain distributions are modelled on the basis of empirical data.

4.1. Data base situation

The data base applied in this contribution has been obtained in experiments described in (Jenkel
et al., 2015; Ulrich and Seim, 2014). The investigated material parameters include the elasticity
moduli and the material strengths in the material directions and depending on the type of loading.
The tests have been carried out on small specimen, as far as possible free of inhomogeneities,
according to European and German standards given in Tab. II. In the table, the number of samples
(under consideration of outliers) as well as the empirical mean value m̄ and standard deviation σ̄
are given for each parameter. The total data sets are documented in (Jenkel et al., 2015; Ulrich
and Seim, 2014).

The experiments are designed to take all samples independently on the basis of identical con-
ditions (i.i.d. paradigm). For the parameters given in Tab. II, data sets should be obtained dis-
regarding the interaction to other parameters. Especially density and moisture, as most relevant
parameters influencing all material parameters of wood, should be blinded out. Thus, as far as
possible, specimen of comparable density are used. The moisture is conditioned in climate chambers.
To avoid size effects and obtain comparable parameters, identical specimen measures are applied
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for most of the test series. Specimen with equal material directions are used in each test series
considering all three material directions, except for the tensile strength perpendicular to grain.

Table II. Experimental basis according to (Jenkel et al., 2015; Ulrich and Seim, 2014).

parameter Er Et El ft,90 ft,l fc,r fc,t fc,l fv

standard DIN DIN DIN EN DIN DIN DIN DIN EN

52192 52192 52185 408 52188 52192 52192 52185 408

samples 41 44 28 30 30 45 45 30 30

m̄ [N/mm2] 656 298 17132 2.64 121.64 3.09 3.64 43.60 5.77

σ̄ [N/mm2] 107 36 2211 0.33 18.20 0.23 0.43 2.07 0.73

4.2. Data modelling

The available data is evaluated statistically to model the material parameters as fuzzy probability
based random variables. The best fitting distribution types for the data sets used in the exam-
ples presented below are given in Tab. III. Exemplarily, the longitudinal elasticity moduli El is
represented by means of a Weibull distribution

F̂El =
({
Fθ×k | θ ∈ θ̃α, k ∈ k̃α

})
α∈(0;1]

, (41)

whereas the distribution parameters are modelled as fuzzy trapezoidal interval numbers according
to Tab. III.The distribution is illustrated in Fig. 6. The black graphs in Fig. 6(a) are obtained using
the max- and min-sets of the space of bunch parameters defined at α = 1 marked by I and II in
Fig. 6(b). The light grey graphs are computed with α = 0 for the max- and min-sets of the bunch
parameters marked by III and IV.

5. Example

The methods presented above are used subsequently to compute the ultimate load of a timber board
containing knots at tensile loading are analysed under consideration of uncertainties in material and
geometrical parameters. The material parameters are modelled as fuzzy probability based random
variables (fp-r) while geometric parameters are described by fuzzy variables.

Knots in timber are remnants of branches in trees and can be considered as structural inhomo-
geneities. The size of knots and the boundary to the surrounding wood can often not be identified
exactly. Thus, the size of the knots is regarded as being uncertain and modelled by means of fuzzy
numbers. The board with dimensions t× b× l = 18× 150× 350mm is analysed at uniform tensile
loading as shown in Fig. 7. The aim is to compute the ultimate load. An FE analysis according
to (Jenkel and Kaliske, 2014) is applied to generate an artificial neural feed forward network, which
is used as deterministic fundamental solution fZ . Thereby, the knots and the surrounding wood are
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θ

Figure 6. Fuzzy probability based random variable El: (a) fuzzy probability density function f̂El and

(b) Cartesian product {θ̃ × k̃}.

Table III. Evaluation of experimental data (all data in [N/mm2]).

parameter distribution type fuzzy distribution parameters

El Weibull θ̃ = 〈17256, 17790, 18326, 18785〉
k̃ = 〈7.529, 9.283, 10.99, 13.83〉

ft,90 Weibull θ̃ = 〈2.6627, 2.7771, 2.8879〉
k̃ = 〈7.7578, 9.7439, 13.5851〉

ft,l Normal µ̃ = 〈114.45, 121.11, 125.37, 132.02〉
σ̃ = 〈14.491, 18.134, 21.248, 27.354〉

fc,r Gumbel ã = 〈2.9097, 2.9687, 3.0375〉
b̃ = 〈4.9700, 5.9334, 7.7054〉

fc,l Log.-Normal µ̃u = 〈3.7554, 3.7737, 3.7917〉
σ̃u = 〈0.0395, 0.0491, 0.0559〉

fv Log.-Normal µ̃u = 〈1.6979, 1.7439, 1.7829〉
σ̃u = 〈0.0931, 0.1259, 0.1553〉

not distinguished by element edges, but by means of integration points. This smeared FE model
is feasible since an individual coordinate system and material parameters can be assigned to every
integration point of each finite element, compare (Zohdi and Wriggers, 2005). The board is simply
discretized by a regular mesh with 2 × 12 × 30 hexahedral 8-node finite elements, see Fig. 7. To
improve the approximation of knots, three integration points are used in each direction per element.
Due to the indirect representation of knots in the FE model, a fixed regular mesh can be applied
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0.9          1.0           1.1

1

0

Figure 7. Original geometrical model and FE model with fuzzy sized knots due to fuzzy knot diameter d̃i.

in the uncertain analysis. Otherwise, a new mesh would need to be generated for each solution step
due to changing knot size.

The board analysed here is experimentally investigated in (Stübi, 2001), whereas the knots are
documented in size and position on the board surfaces. The procedure how to derive a geometrical
model as shown in Fig. 7 from these measurements is presented in (Jenkel and Kaliske, 2014). For
the given example, the knots are described as cylinders passing the board in different angles. The
board contains 4 knots i = {1, 2, 3, 4}. The original knot diameters d0,i taken from (Jenkel and
Kaliske, 2014; Stübi, 2001) are varied in-between ±10%. Thus, four fuzzy knot diameters

d̃i = f̃d,i · d0,i, i = {1, 2, 3, 4} (42)

are introduced using fuzzy triangular numbers f̃d,i = 〈0.9, 1.0, 1.1〉 as knot factors, see Fig. 7.
Before the structural analysis is carried out, a material coordinate system representing the three

material directions r, t and l needs to be assigned to every integration point. In general, the
longitudinal direction is defined by the stem direction, the tangential direction by the growth rings
and the radial direction by the medullary rays pointing to pith. In the area of branches, the fibre
course, i.e. the longitudinal direction, is deviating from the stem direction. Therefore, the fibre
course is computed by means of a streamline approach presented in (Jenkel and Kaliske, 2014)
based on a flow-grain analogy. Since the knot diameters are varied, this computation has to be
carried out for every solution step within the fuzzy stochastic structural analysis.

The ultimate load pu is computed using a Tsai-Wu plasticity formulation with linear isotropic
softening, see e.g. (Schmidt and Kaliske, 2009; Tsai and Wu, 1971). In the simulations, the load p
is increased by small increments. If the total cross-section in an arbitrary region of the board is in
the plastic regime, the load will decrease. The ultimate load is determined as maximum loading in
the computed load-displacement dependencies pu = max(p).
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The material parameters are modelled based on the empirical data described above. In the
applied elasto-plastic material model, the 9 material parameters described in Tab. II (El, Er, Et,
fc,r, fc,t, fc,l, ft,90, ft,l and fv) are utilized. In addition, the shear moduli, Poisson’s ratios and the
rolling shear strength are needed. Since these parameters are not investigated in the experiments,
deterministic standard values are chosen in terms of νrt = 0.24, νtl = νrl = 0.45 and Grt =
80N/mm2, Gtl = Grl = 800N/mm2 and fv,rt = 0.1 · m̄fv for all simulations.

Two configurations are considered, whereas the knots are modelled as holes (ktype = 1) and as
being filled and fully connected to the surrounding wood (ktype = 2). If ktype = 1, the knot holes
are approximated in the regular mesh using 1% of the values of the material parameters applied for
the surrounding wood. If ktype = 2, the same material parameters as for the surrounding wood are
applied for the integration points inside the knots, but with material coordinate systems defined by
the longitudinal branch axes. The influence of the 9 material parameters and the four knot factors
has been investigated on the basis of a Design of Experiments (DoE) for both configurations, ktype =
1 and ktype = 2. Beside the ultimate load pu, the displacement uz(pu) at the point of maximum
load, obtained as mean value of the displacements in z-direction of all loaded nodes, is regarded as
result quantity. The results are evaluated in sensitivity analyses using Sobol indices (Sobol, 2001).
In Fig. 8, the sensitivity measures of all input quantities are given.

The outcomes are similar for both knot configurations. The ultimate load pu is influenced mostly
by ft,l and fv. The displacement at the point of ultimate load uz(pu) is affected by El, ft,l, fv and
slightly ft,90. The influence of the knot factors seems to be rather small. The effects of the different
factors might neutralize if one knot becomes larger while the other gets smaller. If ktype = 2, the
knots have larger influence, probably due to their load bearing capacity. The Sobol indices of the
particular knot factors correspond to the original knot size. As a consequence of the sensitivity

Figure 8. Sensitivity measures S of all input variables regarding the result values pu and uz(pu).

analysis, the longitudinal elasticity modulus El, the tensile strength perpendicular to grain ft,90,
the longitudinal tensile strength ft,l and the shear strength fv are modelled as fuzzy probability
based random variables using the best fitting distribution types identified in Tab. III. All other
material parameters are modelled deterministically by their mean values according to Tab. II. A
Weibull distribution is used to represent El, see Fig. 6. For ft,l, a Normal distribution fits best
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to the empirical data. Since these material parameters appear to be most relevant, the distribution
parameters are described by means of fuzzy trapezoidal interval numbers, see Tab. III.

For each configuration (ktype = 1, 2), the ultimate load pu is computed as fuzzy stochastic result
quantity. Quantiles q̄i are chosen to represent the uncertain distribution of pu here. The α-level
optimization is carried out on α-levels α = {0, 16 , 13 , 12 , 23 , 56 , 1} regarding q̄1, q̄5, q̄25, q̄50, q̄75, q̄95 and
q̄99. The results of the simulation with ktype = 1 are illustrated in Fig. 9. The uncertain ultimate
load pu computed using ktype = 2 is depicted in Fig. 10.

Figure 9. Uncertain distribution of pu represented by fuzzy quantiles ˜̄qi for ktype = 1.

Figure 10. Uncertain distribution of pu represented by fuzzy quantiles ˜̄qi for ktype = 2.

In both figures, the fuzzy numbers for the particular quantiles ˜̄qi with i = {1, 5, 25, 50, 75, 95, 99}
are depicted in 3D views. The black circles mark the bounds of each fuzzy number on each α-level.
All fuzzy quantiles are obtained as kind of fuzzy trapezoidal interval numbers. In addition, a top
view is given. The black lines represent the plateaus of the fuzzy trapezoidal interval numbers while
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the grey lines represent the support. As can be seen in the top views, the uncertain distribution
function of pu is approximated by the quantiles.

For ktype = 1, smaller ultimate loads are computed as for ktype = 2, which is reasonable due
to the load bearing capacity of the knots. The membership functions of the fuzzy quantiles are
similarly shaped for both configurations. The range of the intervals computed for each quantile
on each α-level is comparable for ktype = 1 and ktype = 2. Moreover, the uncertain distributions
according to the top views in Figs. 9 and 10 are very similar, except that the distribution for
ktype = 2 seems to be shifted to the right about 2-3 N/mm2.

In this example, methods for the consideration of material and structural inhomogeneities are
applied jointly revealing the advantages of the introduced uncertainty models. The results given in
Figs. 9 and 10 include information, which could not have been achieved by application of a pure
stochastic analysis.

6. Conclusion and Outlook

The uncertainty of material and structural parameters has manifold reasons. If the uncertainty of
input parameters shall be considered realistically in a structural analysis, appropriate data models
are needed. In this contribution, a general description with polymorphic uncertainty is utilized
and further classified into aleatoric and epistemic uncertainty. The first type is described using
randomness while the latter is represented by means of fuzziness. The combination of both yields
fuzzy randomness which is ideally suited to describe the uncertainty of material parameters of wood.
Although the natural variability of material parameters is identified with aleatoric uncertainty, an
application of randomness is often not feasible due to the limitations of available data bases.

Methods to model empirical data by fuzzy randomness with focus on fuzzy probability based ran-
dom variables are introduced. The procedure is applied to describe the uncertainty of macroscopic
material parameters of wood. In addition, the uncertainty of geometrical and further structural
parameters is represented using fuzzy variables. The procedure of a fuzzy stochastic structural
analysis is described theoretically and demonstrated by an examples. In the structural analyses
of wooden structures, information is considered which could not have been included in stochastic
analyses nor a single deterministic structural analysis.

According to EN 1990 (2010), a semi-probabilistic safety concept is proposed for the future
determination of partial safety factors. A stochastic analysis procedure as special case of the
introduced methods can be used for the calibration of safety factors in a partial factor design
concept. A failure probability might be prescribed, which is used to determine deterministic design
values from the uncertain input parameters and results. These values simply need to be related to
the characteristic values to define partial safety factors.

Although the uncertainty models fuzziness and fuzzy randomness are established in science, an
application for the purpose of standardization seems improbable in short term. Actually, engineers
demand a further simplification of the design rules instead of a wider range of methods (Seim
et al., 2012). However, the evaluation of the uncertain results can give an additional input for the
determination of less conservative safety factors and a better utilization of the load bearing capacity
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of timber structures. Future work is necessary to get from the fuzzy stochastic structural analysis
presented here to recommendations for a numerical design concept.

In uncertain structural analyses, uncertain results are computed containing all information pro-
vided due to the uncertain input parameters. Engineers require deterministic values to determine
a structural design. Measures of central tendency as mean value and measures of dispersion as
quantiles can be used to reduce the information of uncertain variables to deterministic values.
Similar measures have been used in the fuzzy stochastic structural analysis to describe the uncertain
distributions of the results. Due to the application of fuzzy randomness, the mean values and quan-
tiles are obtained as uncertain quantities, which might need to be simplified themselves. Information
reducing measures for fuzzy numbers are introduced e.g. in (Beer and Liebscher, 2008; Graf et al.,
2009).

In this contribution, the idea is not to reduce the uncertainty but keep as much information
as possible. If all available data are considered in the structural analyses, the influence of the
uncertainty of the input parameters on the structural results can be evaluated. Engineers can obtain
indication which input parameters deserve closer attention and might be modified to improve a
structural design. Therefore, robustness analyses, such as in (Beer and Liebscher, 2008; Graf et al.,
2009), and sensitivity analysis, see e.g. (Pannier and Graf, 2015), are powerful tools. Moreover,
the procedures presented in this contribution can be used in structural optimization approaches as
introduced in (Götz et al., 2015).
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Viertl, R. Einführung in die Stochastik. Springer, Wien, 1997.
Zadeh, L. A. Fuzzy sets. Information and Control, 8:338–353, 1965.
Zadeh, L. A. Similarity relations and fuzzy orderings. Information Sciences, 3:177–200, 1971.
Zohdi, T. I. and P. Wriggers. Introduction to Computational Micromechanics. Springer, Berlin, 2005.

REC 2016 - F. Leichsenring, W. Graf and M. Kaliske

177






