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Abstract: It is often the case that sparse statistical data prohibits the assignment of a pre-
cise probability distribution to a given uncertain variable. In these cases, conventional statistical
approaches such as Bayesian inference provide uncertain probability distributions - or imprecise
probabilities. For convenience, many probabilistic approaches assign a specific distribution based on
Maximum Likelihood Estimation (MLE) or some other criteria. Yet propagation of this single MLE
distribution ignores potentially importance uncertainty/variability in these variables. Meanwhile,
some quasi-probabilistic approaches treat the uncertainties in the distribution using intervals (e.g.
mean value of a distribution may be assigned an interval) and propagate a family of distributions to
construct a probability-box (or p-box) to bound the probabilities (Beer et al., 2013). This approach
is generally computationally very expensive requiring several Monte Carlo analyses to propagate a
large number of distributions.

In this work, we propose an approach based on importance sampling to propagate imprecise
probability distributions with a single Monte Carlo analysis. The approach uses Bayesian inference
to quantify the imprecise probabilities - determining a set of possible candidate distributions (that
may come from different families - e.g. normal, lognormal, gamma, etc.) weighted according to their
probability of occurrence. We then identify an optimal sampling distribution that best represents all
possible candidate distributions. Samples from this optimal sampling distribution are propagated
using Monte Carlo simulation and are re-weighted according to the different candidate distributions.
Hence, we achieve the propagation of many probability distributions with a single Monte Carlo
simulation. A further advantage of the methodology is that the underlying probability models
can be updated using Bayesian updating and propagation of these updated distributions does not
require additional simulations. Instead, the weights associated with the existing simulations are
updated directly to update the probability model of the solution.
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1. Introduction

Modern engineering structures and systems, and the models used to represent them, are often
characterized by a high degree of complexity. Modeling the influence of various physical phenomena
in these systems presents a significant challenge. With the rapid growth of deterministic modeling
capabilities, it is becoming widely acknowledged that predictive modeling capabilities can only be
achieved by accounting for uncertainties in the modeling process. Therefore, uncertainty quantifi-
cation plays an important role in computational modeling from design to reliability analysis and
risk assessment of complex systems.
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A prominent obstacle in uncertainty quantification is the discrepancy between the required
information and the available information. This discrepancy is often caused by limitations in the
ability to collect sufficient information/data to accurately assign values or probability models to
all variables in the problem (i.e. the presence of epistemic uncertainty). For instance, naval ship
structures are incredibly complex engineering systems that are subject to highly stochastic marine
environments. Further complicating the analysis of these structures is that design specifications
provide only nominal values for material and geometric variables and maintenance/inspections are
sparse, qualitative, and cover only a small fraction of critical structural components. Although
some powerful statistical tools can be used to enable probabilistic modeling given sufficient data
of suitable quality, the available data in engineering practice are often limited and of poor quality,
which prevents the identification of a precise probability model and its associated parameters.

Imprecise probability approaches have been widely employed and have proven to be effective tools
to overcome the issues caused by vague, limited and equivocal information. A series of influential
developments on generalized methods has been discussed in the literature (Helton and Oberkampf,
2004; Beer et al., 2013) from various perspectives, including Bayesian approaches (Der Kiureghian
et al., 2009), interval methods (Moore and Bierbaum, 1979; Ferson and Hajagos, 2004; Ferson
and Ginzburg, 1996), Dempster-Shafer evidence theory (Nelsen et al., 2004) and fuzzy theory
(Dubois and Prade, 2005; Stein et al., 2013) among other approaches. More generally, attempts
have been made to bring all of these components together under a unifying theory of imprecise
probability, which is mainly part of the generalized framework of information theory (Walley, 1991;
Walley, 2000). In this framework, probability theory is employed on behalf of stochastic variations
in the system variables while epistemic uncertainties associated with the probability laws and their
parameters are described using the concepts discussed above.

Traditional statistical inference is based on an assumed probability model (i.e. distribution
type) and its parameters (e.g. mean and standard deviation) are estimated using observed data.
When sufficient data is provided, these conventional approaches assign a specific distribution with
parameters estimated using e.g. maximum likelihood estimation or method of moments. However, it
may be impossible to identify a precise distribution type and its parameters given uncertainty due to
limited data. This results in many possible/viable probability models with interval or probabilistic
model parameters such that uncertainty propagation becomes a major challenge. Existing methods
for propagation of imprecise probabilities are usually computationally intractable for all but the
simplest problems because they typically require a large number of individual probability studies
spanning the range of possible probability distributions and parameters.

This paper proposes an efficient methodology to propagate imprecise probability distributions
using Bayesian inference and importance sampling with a single Monte Carlo study. An optimal
sampling distribution is identified to represent all candidate distributions by minimizing the overall
differences between the sampling distribution and the ensemble of candidate variable distributions
characterized by the Hellinger distance and the total variation distance. Samples are generated
by this optimal sampling distribution and re-weighted according to importance sampling to simul-
taneously propagate all candidate distributions. The method has the further advantage that the
probability study can be updated directly as additional data is collected. This is enabled through
Bayesian updating of the joint model parameter distribution and re-weighting of the samples
according to the updated probability laws.
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2. Review of Important Concepts

2.1. Bayesian inference

Bayesian inference holds a central position in data-driven uncertainty quantification and uncertainty
propagation in engineering science. As a statistical method, Bayesian inference is used to obtain a
posterior PDF p(φ|d,M) for the parameters φ of a model class M using experimental observations
d. This is achieved through Bayes’ rule

p(φ|d,M) =
p(d|φ,M)p(φ,M)

p(d,M)
(1)

where p(φ,M) is the prior PDF that expresses existing knowledge (or lack thereof) about the
parameters, p(d|φ,M) is the likelihood of observing the data d from the model class M with
parameters φ, and p(d,M) is the evidence of model M and is equal to

p(d,M) =

∫
p(d|φ,M)p(φ,M)dφ (2)

Evaluating p(d,M) is often a non-trivial task because the integration in Eq. (2) is usually analytical
intractable for nonlinear and high-dimensional models. To overcome this issue, either Markov Chain
Monte Carlo (MCMC) approaches are employed or conjugate distributions are utilized.

The posterior model parameters determined from Eq. (1) are stochastic and are presented in
the form of a PDF. From this PDF, the model parameters are frequently assigned using maximum
likelihood estimation (MLE) but this ignores the essential variability in distribution parameters,
which may have an important role in the results of a probability study - especially when data
are sparse, imprecise or limited. Furthermore, the selection of the model M itself is subject to
question unless abundant data are provided or some some rationale is used to supply convincing
evidence that a specific model form applies (e.g. Central Limit Theorem applies so the distribution
should be normal). In the coming sections, we discuss issues of non-unique model selection and the
simultaneous propagation of many models having uncertain parameters.

2.2. Model selection

In the case of sparse data, the selection of a probability model is a substantial challenge. Existing
model selection procedures often rank the candidate models based on some widely accepted criteria.
Most approaches of model selection can be categorized into three classes: (a) frequentist methods
(Guyon et al., 2010), (b) Bayes factor method (Berger and Pericchi, 1996), and (c) methods based
on information theory such as the Akaike information criterion (AIC) (Akaike, 1974) and Bayesian
Information Criterion (BIC) (Schwartz, 1978). The AIC and BIC, defined as follows, are used here

AIC(M) = 2p− 2L(φ̂) (3)

BIC(M) = p log n− 2L(φ̂) (4)

where L is the log-likelihood for model M , φ̂ are the parameter values that maximize the likelihood
function, p is the dimensionality of the parameter space, and n is the number of observations.
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Minimizing the AIC and BIC corresponds to maximizing the posterior model probability for a
large amount of data. Again, the AIC and BIC cannot provide an exact means of model selection
(especially under limited data), but instead provide evidence that certain types may be valid while
others are not.

2.3. Importance sampling

To improve the accuracy and reduce the cost of stochastic simulation approaches, diverse variance
reduction techniques exist. One of the most widely-used approaches is Importance Sampling (IS).
Based on the introduction of a proposal sampling density (referred to as the IS density), IS con-
centrates the computational effort in regions of the uncertain model parameter space that play a
more important role in the overall probabilistic performance. Consider a system that involves some
design variables x and stochastic model parameters θ. If the performance function of the system
model is given by f(x,θ), then the expected performance is computed as

L =

∫
f(x,θ)p(θ)dθ = Ep[f(x,θ)] ≈ 1

N

N∑
i=1

f(x,θi) (5)

where θi are independent identically distributed (i.i.d.) samples drawn from p(θ), Ep[·] is the
expectation under target distribution p(θ), and N is the number of samples. Importance sampling
associated with proposal sampling density q(θ) transforms the integral to

L̂ =

∫
f(x,θ)

p(θ)

q(θ)
q(θ)dθ = Eq[f(x,θ)

p(θ)

q(θ)
] ≈ 1

N

N∑
i=1

f(x,θi)
p(θi)

q(θi)
(6)

where Eq[·] is the expectation with respect to q(θ). The ratio ω(θ) = p(θ)/q(θ) can be interpreted as
the weights of samples generated from q(θ). Selection of an efficient proposal sampling density will
lead to significant improvement in accuracy (i.e. variance reduction). Conversely, poor IS density
selection can increase variance. The optimal choice for the proposal sampling density is derived by
minimizing the variance of the estimator L̂ as

q∗(θ) =
|f(x,θ)p(θ)|∫
|f(x,θ)p(θ)| dθ

(7)

where |·| means the absolute value. In practice, this choice is intractable since it needs simulation of
samples from a PDF that is proportional to the integrand of the expectation and the expectation
itself.

2.4. Hellinger distance and total variation distance

As the choice of optimal sampling distribution is not feasible using Eq. (7), one way is to find
a proposal sampling density that has a minimal difference with the optimal one. The Hellinger
distance, as a special case of the Csiszár’s φ-divergence (Csiszar, 1975), can be used to quantify the
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difference between probability distributions p(θ) and q(θ) as

H(P,Q) =

(
1

2

∫ (√
p(θ)−

√
q(θ)

)2
dθ

) 1
2

(8)

One way to minimize the difference between two distributions is to find the distribution that
produces the minimum Hellinger distance estimator (MHDE) (Beran, 1977). In order to obtain the
solution of

~ = arg min
1√
2

∥∥∥√p(θ)−
√
q(θ)

∥∥∥
2

(9)

where ‖p− q‖2 =

(∫ (√
p(θ)−

√
q(θ)

)2
dθ

) 1
2

denotes the `2 norm, we instead use the square

MHDE which is convenient for expressing the derivative of the optimal sampling distribution in
the following section

~2 = arg min
1

2

∥∥∥√p(θ)−
√
q(θ)

∥∥∥2

2
(10)

where ‖p− q‖22 =
∫ (√

p(θ)−
√
q(θ)

)2
dθ denotes the square `2 norm. This is achieved by con-

structing a nonparametric proposal density q(θ) and conducting an optimization with Eq. (10) as
the objective.

3. Optimal Importance Sampling for Multiple Distributions

To date, importance sampling has always been used with a precisely specified target distribution
p(θ). However, in the imprecise probability case caused by lack of data, the target distribution
cannot be assigned precisely and therefore, the estimation of the optimal sampling distribution
becomes a significant challenge. This work first utilizes a Bayeisan inference approach to quantify
the imprecise probabilities by identifying several viable probability models M through AIC/BIC
and retaining the distributions of their model parameters φ. From this, a series of possible candidate
target distributions are assigned on the basis of their probability of occurrence. The fundamental
difference with classical importance sampling is that a set of probabilistically weighted target
distributions are taken into consideration. The crucial issue addressed in this study is how to
select an optimal importance sampling density to effectively represent and propagate all candidate
target distributions. To do so, we need to identify a sampling distribution that is as close as possible
to the ensemble of target distributions.

Our object of maximizing the representativeness of the importance sampling distribution for
multiple target distributions can be restated as minimizing the total difference between the im-
portance sampling distribution and the ensemble of target distributions. This is the equivalent of
minimizing the distance in the probability space. Utilizing the Hellinger distance, an overall square
MHDE with uncertain distribution parameters and distribution types is proposed as

~2 = arg min

Nd∑
i=1

∫
φ

1

2

∥∥∥√pi(θ|φ)−
√
q(θ)

∥∥∥2

2
dφ (11)
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where Nd is the number of candidate probability models defined through the target densities pi(θ|φ)
having parameters φ. An advantage of this Hellinger distance metric is that we can obtain the
analytical solution for the optimal proposal sampling. If we set the derivative of the overall square
MHDE ~̂2 with respect to q(θ) as

∂~̂2

∂q(θ)
=
∂
∑Nd

i=1

∫
φ

1
2

(√
pi(θ|φ)−

√
q(θ)

)2
dφ

∂q(θ)
(12)

∂~̂2

∂q(θ)
=

1

2

Nd∑
i=1

∂
∫
φ

(√
pi(θ|φ)−

√
q(θ)

)2
dφ

∂q(θ)

 (13)

∂~̂2

∂q(θ)
=

1

2

Nd∑
i=1

(
∂
∫
φ pi(θ|φ)− 2

√
pi(θ|φ)q(θ) + q(θ)dφ

∂q(θ)

)
(14)

∂~̂2

∂q(θ)
=

1

2

Nd∑
i=1

(∫
φ

(
1−

√
pi(θ|φ)

q(θ)

)
dφ

)
(15)

For the special case of two parameter distributions with φ = (µ, σ) where µ and σ are the mean
and standard deviation respectively, we have

∂~̂2

∂q(θ)
=

1

2

Nd∑
i=1

(∫
µ

∫
σ

(
1−

√
pi(θ|µ, σ)

q(θ)

)
dµdσ

)
(16)

By partitioning the joint probability density of model parameters pi(θ) for each distribution type,
we extract a finite but representative number of candidate target distributions from the infinite
set. The derivative can then be approximated using discretized means µj(j = 1, 2, ..., Nmi) and
standard deviations σk(k = 1, 2, ..., Nsi) as

∂~̂2

∂q(θ)
≈ 1

2

Nd∑
i=1

Nmi∑
j=1

Nsi∑
k=1

1−

√
pi(θ|µj , σk)

q(θ)

 (17)

where Nmi ×Nsi represents the total number of uncertain distribution parameters for model class

Mi (e.g. mean and standard deviation for two-parameter distributions). Setting ∂~̂2
∂q(θ) = 0 and (for

simplicity) assuming Nmi = Nm ∀i and Nsi = Ns ∀i, we have

Nd∑
i=1

Nm∑
j=1

Ns∑
k=1

1−
Nd∑
i=1

Nm∑
j=1

Ns∑
k=1

√
pi(θ|µj , σk)

q(θ)
= Nd ·Nm ·Ns−

∑Nd
i=1

∑Nm
j=1

∑Ns
k=1

√
pi(θ|µj , σk)√

q(θ)
= 0 (18)

Therefore, the optimal proposal sampling density will be

q∗(θ) =

∑Nd
i=1

∑Nm
j=1

∑Ns
k=1

√
pi(θ|µj , σk)

Nd ·Nm ·Ns

2

(19)
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However, as a nonparametric model, q∗ is not always a PDF that satisfies
∫
q∗(θ)dθ = 1 unless all

candidate target distributions are the same. Actually, all target distributions are different here, so
it will be improper to choose q∗(θ) as the proposal sampling density. In order to ensure q∗(θ) is a
valid PDF, we may alternatively consider the optimization according to the total variation distance
∆(P,Q) defined through the following `1 norm

∆(P,Q) = max ‖P −Q‖1 =
1

2

∑
θ

|p(θ)− q(θ)| (20)

thanks to the following property stated by (Lindsay, 1994) relating it to the Hellinger distance

H2(P,Q) ≤ ∆(P,Q) ≤
√

2H(P,Q) (21)

Thus, an equivalent way to obtain the optimal proposal sampling distribution is to minimize the
total variation distance in Eq. (20), which yields

q̂∗(θ) =
1

Nd ·Nm ·Ns

Nd∑
i=1

Nm∑
j=1

Ns∑
k=1

pi(θ|µj , σk) (22)

where q̂∗(θ) is a nonparametric density estimator that consists of multiple mixture distributions.
If the weights of different distribution types and parameters are identical, the coefficient for each
candidate target will be equal. More generally, the optimal proposal density can be written with
different weighting coefficients

q̂∗(θ) =

Nd∑
i=1

Nm∑
j=1

Ns∑
k=1

λijk · pi(θ|µj , σk) (23)

where λijk is the weighting coefficient for the ith distribution type with parameters of the jth mean

and the kth standard deviation, and satisfies∑
i,j,k

λijk = 1 (24)

These coefficients may be derived from probabilistic considerations that account for the probability
of occurrence of distribution parameters and model classes from the provided data.

4. Propagation of Imprecise Probability

By the discussion above, there are theoretically infinite candidate target distributions. Even after
discretization, thousands of candidate distributions remain. Existing algorithms are often very
computationally intensive since individual probability studies (Monte Carlo analyses) are needed
to propagate each distribution separately. The method proposed here utilizes importance sampling
to propagate these thousands of distributions simultaneously through a single Monte Carlo study
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by generating samples from the optimal proposal sampling density in Eq. (22), and reweighting
the samples according to each target. Specifically, after sampling from q∗(θ), importance sampling
estimators are constructed for each candidate target pi(θ|µj , σk) according to Eq. (6) and denoted

L̂ijk, i = 1, . . . , Nd, j = 1, . . . , Nm, k = 1, . . . , Ns. Note that all estimates L̂ijk are constructed from

the same set of samples drawn from q∗(θ), greatly reducing the computational cost over existing
methods.

This procedure generates a set of probability distributions for the system performance that
can be further assessed probabilistically. Given the Bayesian nature of the model construction,
each of the probability distributions has an associated probability of occurrence derived from the
joint density of its model parameters φ. Consequently, these distributions provide a rich source of
information that goes beyond, for example, probability bounds that are typically available (in the
form of a p-box for instance) to give a fully probabilistic measure of the output. This can be used
to evaluate quantities like the PDF/CDF for statistical quantities or probability of failure that
account for uncertainties associated with insufficient data.

A final advantage of the proposed method is that it can be readily updated to incorporate
new data as it is collected. Using Bayesian updating, the joint parameter distirbution p(φ) is
updated and the associated candidate target distributions are updated. However, it is not strictly
necessary to identify a new optimal sampling density and the existing samples can be used for
uncertainty propagation by re-weighting according to the importance sampling weights with the
new target densities. Note that this does not ensure a low-variance estimator. In fact, the sampling
density after updating is no longer optimal and may yield an increase in variance. If necessary, this
variance can be reduced by either adding samples from q∗(θ) or solving for a new optimal PDF
and resampling.

5. Numerical Example

The proposed methodology and its application are illustrated by an example considering the
probabilistic assessment of plate buckling strength with uncertain geometric and material pa-
rameters. Carlsen (Carlsen, 1977) derived an analytical expression to evaluate the normalized
buckling strength ψ of a simply supported plate in uniaxial compression considering the effects
of non-dimensional initial deflections δ0 and residual stress ηt resulting from welding as

ψ =
σb
σ0

=

(
2.1

λ
− 0.9

λ2

)(
1− 0.75δ0

λ

)(
1− 2ηt

b

)
(25)

where σb is the stress at which buckling occurs, λ = b/t
√
σ0/E is referred to as the slenderness

of the plate with width b, thickness t, yield stress σ0, and elastic modulus E. These material and
geometric variabilities are estimated from the data presented by Hess et al. (Hess et al., 2002) and
Soares (Soares, 1988) as presented in Table 1. According to a global sensitivity analysis (Saltelli,
2008), the yield stress shows the highest influence on the buckling strength accounting for nearly
half of its variance, and therefore will be the main concern of this work.
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Table I. Statistics for plate material, geometry and imperfection variables from Hess et al. (Hess
et al., 2002) and Soares (Soares, 1988).

Variables Physical Meaning Nominal Value Mean COV Sensitivity Index

b Width 24 0.992*24 0.028 0.017

t Thickness 0.5 1.05*0.5 0.044 0.045

σ0 Yield Strength 34 1.3*34 0.1235 0.482

E Elastic Modulus 29000 0.987*29000 0.076 0.194

δ0 Initial Deflection 0.35 1.0*0.35 0.05 0.043

η Residual Stress 5.25 1.0*5.25 0.07 0.233

We start with a collection of 25 yield stress values synthetically generated according to a normal
distribution with parameters given in Table I. All other variables are assumed deterministic and
taking their mean values. Next, we use the AIC (Eq. (3)) and BIC (Eq. (4)) to select viable
distribution types based on the limited data. Table II presents the AIC and BIC values for several
candidate distribution types. Note that only the Rayleigh and Exponential distributions stand
out as having particularly high AIC/BIC and therefore we do not consider these two types as
representative of our data. This leaves 11 distribution types that we consider as viable.

Table II. The rank sequence of distribution type using AIC and BIC.

Rank sequence Distribution type Akaike Information
Criterion (AIC)

Bayesian Information
Criterion (BIC)

1 Inverse Gaussian 160.9097 163.3474

2 Birnbaum-Saunders 160.9122 163.3499

3 Lognormal 160.9450 163.3828

4 Gamma 161.3044 163.7422

5 Loglogistic 161.7626 164.2004

6 Nakagami 161.7886 164.2264

7 Rician 162.3961 164.8338

8 Normal 162.4284 164.8662

9 Logistic 162.8088 165.2465

10 Weibull 166.3174 168.7552

11 Extreme Value 170.0299 172.4676

12 Rayleigh 208.0995 209.3183

13 Exponential 241.5110 242.7299
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Figure 1. Joint posterior distribution for mean and standard deviation from Bayesian inference using datasets with
25 (left), 50 (middle) and 100 (right) yield stress values.

Using Bayesian inference, the joint posterior distribution of the mean and standard deviation
are obtained from the initial 25 data. An equal partition of the joint probability distribution into a
10×10 grid yields 100 distinct values of the model parameters shown by the black dots in Figure 1.
These pairs of mean and standard deviation values are then used with each of the 11 distribution
types to produce a representative set of target distributions shown by the gray densities in Figure
2. When more data are collected, the joint posterior distribution of (µ, σ) is updated using Bayesian
updating, as shown by the contours in Figure 1 for 25, 50, and 100 yield stress values. Again, the
joint density is discretized through an equal partitioning of the probability space shown by the
black dots.

The optimal sampling distribution is constructed analytically based on these 11 candidate target
distributions and 100 possible parameter values (i.e. from a total of 1100 candidate target distri-
butions - each equally probable). The optimal sampling density is shown by the black curve in
Figure 2. The suite of distributions in Figure 2 are propagated through Eq. (25) by generating
5000 samples from the optimal sampling density and applying the importance sampling weights for
each distribution. This propagation results in the gray band of CDFs for the compressive strength
shown in Figure 3. Note that we do not update the optimal sampling density as data is gathered.
This can be observed in Figure 2 where it is seen that the gray band of candidate target densities
narrows but the black optimal sampling density remains the same. Hence, the optimal sampling
density is no longer optimal in the right and middle images but remains sufficient for propagation
and no new samples need to be generated. All of the CDFs shown in Figure 3 (from left to right)
have been generated from the same 5000 random samples. Notice also that the band of CDFs in
Figure 3 narrows considerably as additional yield stress values are collected. This is expected as
the additional data reduces the epistemic uncertainty.

Next, consider that failure occurs when ψ < 0.56 - shown by the dashed vertical line in Figure 3.
Given the equal partitioning of the probability space, each of the CDFs resulting from a given input
distribution in Figure 3 is equally probable (note that the distribution types are not necessarily
equally probable). We can therefore determine the empirical CDF of P (ψ < 0.56) conditioned on
the input distribution type as shown in Figure 4. Each of these CDFs has 100 values corresponding
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Figure 2. Ensemble of candidate target densities and the optimal proposal sampling density for yield stress from
datasets with 25 (left), 50 (middle) 100 (right) yield stress values.

Figure 3. Ensemble of cumulative distribution functions with uncertain yield stress derived from propagation of
uncertain probability models constructed using 25 (left), 50 (middle), and 100 (right) yield stress values.

to the 100 points in the 10× 10 grid for the partitioning of the joint parameter probability space.
Notice again that when there is little data, the CDFs are wide with P (ψ < 0.56) in the range
[0, 0.18]. However, as data is collected the range narrows considerably such that P (ψ < 0.56) in the
range [0, 0.09]. Theoretically, as a very large amount of data is collected these CDFs will converge
toward a step function such that P (ψ < 0.56) is known with certainty for each assumed input
distribution.
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Figure 4. Empirical CDF of the probability of plate buckling failure P (ψ < 0.56) with uncertain yield stress derived
from propagation of uncertain probability models constructed using 25 (left), 50 (middle), and 100 (right) yield stress
values..

6. Conclusion

Bayesian inference is used to quantify the uncertainty associated with a distribution derived from
data. Yet, in the almost universal case of lack of complete data, the derived distribution cannot be
precisely specified. We propose a efficient approach, based on Importance Sampling, for propagating
uncertain probability distributions. The method identifies an optimal sampling distribution that
is representative of the possible range of distributions and adaptively reweights the samples to
simultaneously propagate the full range. An advantage of this approach is that the underlying
probability models can be simply updated using Bayesian updating and we don’t need additional
simulations for propagation of the updated distributions. Instead, the existing simulations are
reweighted and updated directly to update the proabability model.
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