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Abstract: This paper concerns the comparison of two established interval field methods for the
representation of spatially varying non-determinism in an FE model: Inverse Distance Weighting
(IDW) interpolation and the Local Interval Field Decomposition (LIFD) method. The comparison
is first made from a theoretical point of view, highlighting the advantages of both techniques
as compared to each other. Next, both IDW and LIFD are applied to a dynamical model of a
U-shaped hollow tube and the resulting uncertain regions at the output side of the model are
compared qualitatively. It is shown that both techniques are complementary to each other due to
the trade-off in their ability to represent the uncertainty set at the output side of the model and
the involved computational cost.
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1. Introduction

In the context of integrating uncertainty and variability in Finite Element (FE) models, several
advanced techniques for taking both inter- (between nominally identical parts) and intra-variability
(spatial variability within one part) into account have recently been introduced. In the framework
of possibilistic non-determinism, especially the theory of Interval Fields (IF) has been proven to
show promising results. Following this approach, variability in the input parameters of the FE
model is introduced as the superposition of a number of base vectors scaled by interval factors.
In the recent past, two techniques for the construction of interval fields have been introduced
by the authors: Inverse Distance Weighting interpolation (IDW) and the Local Interval Field
Decomposition method (LIFD). In this paper, these two established interval field methods are
compared in their ability to represent different uncertain input sets and the computational work
required. Both techniques are compared theoretically, as well as applied to a dynamical model of a
hollow U-shaped tube.
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2. Interval Field Concepts

2.1. GENERAL FRAMEWORK

Uncertain parameters in FE models typically have a spatial character: material properties such
as density and Young’s modulus or geometric properties such as plate thickness are geometrically
oriented in space. In the context of dealing with uncertainty in simulation models, these parameters
can show variability over the spatial domain, referred to as geometric variability. In FE-models, such
a geometric parameter is discretised to the elements, leading to a set of discrete values representing
that parameter in each element of the model. According to the possibility of geometric variability,
the value in each element can vary separately, leading to different values in each element. However,
some degree of dependency will usually be present and the value in different elements can not vary
independently. Here the interval concept poses a problem. The uncertainty in each element could be
captured by an interval parameter marking the bounds of the variation, but interval parameters are
by definition incapable of incorporating the dependency present in the spatial domain. To mark the
uncertainty present in such field parameters using a possiblistic technique, the interval field concept
can be used. In its simplest form, an interval field consists of basis functions ¢(r) representing the
dependency and interval coefficients o representing the uncertainty. The explicit formulation of
the interval field is defined as:

n
Y1) = ol i) (1)
i=1
with n the number of basis functions employed in the representation.

2.2. THE LocAL INTERVAL FIELD DECOMPOSITION METHOD

2.2.1. General objective

For this interval field definition, we start from a field parameter u(r), with r the spatial coordinates.
When applied to an FE-model, such a continuous parameter is discretised to the elements of the
FE-mesh, leading to a set of discrete parameters. Within this set a certain amount of spatial
dependency is always present. The parameter value assigned to elements in close proximity to
each other will show more interdependence than elements further away. This poses a problem for
defining a plausible possibilistic field: the field can easily be made non-deterministic by defining an
interval parameter in each element marking the bounds of the uncertain parameter value in each
element, but this completely disregards any dependency present and will always overestimate the
true uncertainty within such a parameter.

In probabilistic context, the Karhunen-Loeve expansion (Vanmarcke, 1993) provides an elegant
solution to this by using the eigenvectors of the covariance matrix of the field as basis functions for
a decomposition method. The coefficients that emerge can be proven to be uncorrelated and even
independent in case of a Gaussian distribution. To define the entries of the covariance matrix, the
correlation length of the field can prove a valuable parameter, defined in Eq. 2:

COV (2(r1), z(r2)) = exp (’rlL_pr?”) 2)
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In possibilistic context, correlation is not defined since it is related to the joint probability
distribution functions which are not defined in this case. In the possibilistic case, we only consider
(in)dependency of parameters, a much wider term than correlation. Since correlation is undefined,
a new global dependency parameter has to be defined that is compatible with the possibilistic
approach. The parameter that will be used in the method described in this section will be the
mazimum gradient of the field parameter (Imholz et al., 2015a; Imholz et al., 2016a). Intuitively, this
makes sense if we define the dependency between two parameters as the maximum difference that
can occur between the two parameters. E.g. , consider two parameters a and b, for which an intervals
a’ and b’ of equal size are defined. If a = b over the entire interval reach, the parameters are perfectly
dependent, whereas in the opposite case, when the parameters can take values independently, the
maximum difference is @ — a. Now consider parameters a and b as instances of the same field
parameter u(r) at places in close proximity r, and r, = r, + dr. The case of perfect dependency
then corresponds to a gradient equal to zero, whereas the case of perfect independency corresponds
to a high maximum gradient, making this a valid parameter to represent the dependency.

The purpose of the interval field should be to accurately represent the true uncertain set, taking
into account the possible dependency within the field. In the case of perfect dependency, a single
discrete variable would suffise to represent the field variable in the entire domain. However, in every
other case, each element of the discretised mesh can (at least partially) determine it’s own value.
The dimensionality of the uncertainty therefore equals the total number of elements in the mesh,
regardless of the degree of dependency. To ensure the entire uncertain set is captured by the field,
the dimensionality of the interval field should be at least equal to the number of elements.

As a conclusion, the interval field will should keep the dimensionality intact, but will transform
the initial set of dependent interval parameters located in each element of the mesh, to a new set
with independent parameters, that will obey a priorly set condition on the mazximum gradient in
the field.

2.2.2. Mathematical definition

The mathematical definition below follows the one explained in (Imholz et al., 2015a) for a field
parameter in a one-dimensional space. The LIFD in 1D will write the non-determistic field u(r) as
an interval field v/ (r) in the form of Eq. 1 that obeys the following statements:

1. Vi e Q: Umzn < U(f) < Umaz

Ou(r)

2.Vre): o

S Gmaw
3. Va(r) :u—u < Dpag

The parameters Gmaz, Umin, Umaz and Dypq. can be independently set. The first statement
demands that the absolute bounds on the field parameter U, and Uy, are never exceeded.
The second statement demands that the norm of the gradient never exceeds a preset value. This
statement accounts for the dependency in the field. The third statement puts a bound on the
difference between the maximal and minimal value of any realisation of the interval field. The
objective of the LIFD is to obey the statements using the four governing uncertainty parameters
mentioned above with an explicit interval field description with independent interval coefficients.
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The only freedom we have is the shape of the basis functions. In the 1D-case, the basis functions
have the following properties:

1. All ¢; are identically shaped radial basis functions.
2. A single ¢; is positioned at each element at location r; of the FE mesh.
3. All ¢; are piecewise second order polynomial functions so the first derivatives are continuous.

figure 1 illustrates the shape of a basis function and its first derivative. To comply with all
demands, the following explicit field is proposed:

b ‘ doi(r)
3 dr

i(r)

Figure 1. shape of a 1D radial basis function. Beyond a radius R from the center point, the basis function equals

Zero.

uI(r):CI+§n:a-1Z~I-¢i(7“,R), (3)

=1

with C7 = (C|C) and 1! = (0[1) defined as the unity interval. The four controllable parameters
are C, C, a and R. A unique mapping between these parameters and the four global uncertainty
pararmeters is given by Eq. 4:

Umaz -

(4)

With dr the discretisation step of the mesh and R the effective radius of the basis functions. With
these relations, the four global uncertainty parameters can be independently set, leading to a unique
field definition as in Eq. 3.
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For the purpose of dealing with bounded physical domains and local measurement data, a few
adjustments can me made to the field mntionned above.
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Figure 2. introduction of dummy points beoynd the physical domain in which non-physical basis functions are places,
this to ensure the maximum gradient constraint is kept at the edges of the domain.
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Figure 3. Adjustment of the basis function around a deterministic measurement point.

1. To ensure the maximum gradient constraint is kept over the entire domain, an adjustment is
needed close to the edge of the domain. For points that lie within a distance R from a domain
edge, the maximum constraint does not hold, because fewer basis functions have an effect in
these points, leading to a smaller interval on the gradient in these points. To counter this,
dummy points are added beyond the physical domain up to a distance R. The basis functions
placed in these points lie partly in the physical domain and will ensure that the maximum

REC 2016 - M. Imholz, M. Faes, J. Cerneels, D. Vandepitte and D. Moens



372

M. Imholz, M. Faes, J. Cerneels, D. Vandepitte and D. Moens

gradient constraint is kept over the entire physical domain. Figure 2 shows the dummy points
beyond the physical domain.

2. Sometimes, local information can be available on the field parameter in a certain element,
effectively fixing the value in that point. This limits the uncertain set to all realisations that
smoothly run through this point. The shape function attached to this point is omitted, but to
ensure the maximum gradient constraint is not violated, all base functions within a radius R
of the point have to be adjusted as well. these adjustments are illustrated in figure 3.

2.3. INVERSE DISTANCE WEIGHTING INTERPOLATION

Inverse Distance Weighting, as proposed by the authors in (De Mulder et al., 2012), constructs
the base functions ¢;(r), needed for the explicit formulation of the Interval Field (1) based on the
definition a priori selected locations r; in the model geometry 2. The selection of these locations
r; is based on the expert engineering knowledge of the analyst on where the uncertainty can be
predicted within accurate bounds. The base functions are constructed following an inverse distance
weighting, where it is assumed that the weight of an interval scalar a{ , defined at r; decreases with
the distance r from that respective location:

wj(r)

Z?:l wj(r)

,with n the number of base functions present in the interval field formulation. The weights w;(r) are
calculated as the inverse of d(r;,r) to the power of p € R>. d(r;, r) is a distance measure between
the location r; where the interval is defined and the rest of the model r. In the specific case of FE
models, the concept of Euclidean distance is insufficient, as this yields non-physical paths between
two points in the interpolation (De Mulder et al., 2012). It is therefore proposed to use a shortest
path approach to calculate these distances.

An illustration of this concept is given in figure 4. The top graph of this figure shows all vertex
realisations when three local intervals af, af and of are respectively defined at element 2, 4 and
8 in a 10 element 1D beam geometry, with of = [1.78;1.85], o = [1.40;1.75] and of = [1.3;2.40].
The middle graph shows the calculated weight functions w;(r) for the respective interval scalars
and p = 2. Finally, the bottom graph shows the base functions ¢;(r) which are calculated based on
the weighting functions for these locally defined interval scalars.

As can be noted, the locally defined intervals remain perfectly decoupled at the locations where
they are defined, whereas the rest of the model can be seen as a weighted sum of their respective
influences.

¢i(r) = (5)
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Figure 4. Nlustration of the employed interpolation scheme. Top: vertex realisations of the resulting interval field, with
the vertical lines indicating the locations of the interval scalars. Middle: Weight functions. Bottom: Base functions of
the interval field, computed following Eq. 5.

3. Case Study

3.1. OBJECT DESCRIPTION AND UNCERTAINTY DEFINITION

Both interval field formulations are applied to the dynamic analysis of a u-shaped tube. This tube is
produced following a cold-forming process and hence the largest uncertainty is located in the bent
part. Therefore, only this part is considered as uncertain in the following analysis. An illustration
of this model is shown in figure 5. An FE model of this geometry is constructed using 75 beam
elements and the model is solved for the first ten non-rigid eigenfrequencies.

(2 >

‘ 1 =2.0m

/@\di = 20mm

d, = 25mm

Figure 5. Illustration of the geometry of the u-shaped cold formed beam under consideration.
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We assume the E-modulus of the tube is subject to uncertainty, ultimately limited to +55% of
the nominal value. The uncertain part of the tube is limited to the curved part, the straight ends
are assumed to be deterministic. In the curved part, the two methods mentioned above are used to
create an interval field for the 21 elements located there.

1. An interval field is defined by imposing that the interval scalars at elements 33 and 43 are both
defined as [93.12 - 10% Pa; 320.8 - 10 Pa] and is constructed following the IDW technique.
Only the uncertainty between element 28 and 48 is regarded in the analysis. Cjy continuity in
the realisations of Young’s Modulus at the border between the certain and uncertain region is
guaranteed by imposing infinitely thin intervals at elements 28 and 48. Propagation of the IDW
interval field is performed following the vertex method (Dong and Shah, 1987). A maximum
gradient of 5-10% M Pa/m is thus obtained in the realisations of the IDW interval field. The
interval field and its gradients for this model is shown in figure 6.

2. For the LIFD, an R-value equal to 0.3m (4 element-lengths) and a-value equal to 40 - 103
MPa provide limits that are similar to the IDW case. In the endpoints of the curved part,
measurement points are introduced to fix the field there at the nominal value. This leads to
an interval field description with 21 terms, one interval parameter and corresponding shape
function in each element. Some realisations are given in figure 7. To propagate this field, a
response surface is created using coefficient fields. Basically, this is a polynomial model that
takes into account the dependency between E-moduli in adjacent elements by assuming the
coefficients of the polynomial are continuous functions of the spatial coordinate r as well (Imholz
et al., 2016a).

Obviously, the analysis using IDW is much more straightforward to perform and less time-
consuming, as it only uses two uncertain independent variables. The LIFD attempts to capture the
entire set of realisations that obey the maximum gradient constraint using 21 uncertain independent
variables, at the cost of increased computational work. The uncertain set of the IDW is a subset of
the uncertain set of the LIFD, which is realised by keeping the maximum derivative and maximum
deviation equal between both approaches. As a result, the uncertain output set of eigenfrequencies
obtained with IDW should be a subset of the uncertain output set obtained with LIFD.

3.2. RESULTING UNCERTAINTY ON THE EIGENFREQUENCIES

In both cases, the uncertain domain at the output is a region within a ten-dimensional domain
containing the 10 eigenfrequencies. To allow for graphical verification, this domain is projected
on some two-dimensional subdomains considering only two eigenfrequencies. Figure 8 shows the
result of the vertex method computation for the IDW interval field. w,, in this figure denotes
one realisation of the input interval field, while C,, indicates the convex hull of the uncertainty
region spanned by these realisations, as proposed by the authors in (Faes et al., 2016a; Faes et al.,
2016b). Two vertex realisations ([E; E] and [E; E]) of the IDW interval field are coincident due
to the symmetry of both the IWD interval field and the model geometry, leading to a triangular
uncertainty region in 10 dimensions.
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Figure 6. Top: Vertex realisations of the interval field obtained by regarding the spatial uncertainty between elements
28 and 48, obtained by interpolating [93.12 - 10°; 320.8 - 10°%] and [93.12 - 10°°; 320.8 - 10°°] at elements 33 and 43.
Bottom: gradients of the vertex realisations of the interval field.
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Figure 7. Some configurations generated by using the LIFD method.

For the LIFD, the vertex method is not applicable as the relatively large amount of variables
(= 21) already amounts to over two million vertex points. Instead, a tracking algorithm was
introduced by the authors in (Imholz et al., 2016b) that creates the 2D-projections of uncertain
regions originating from monotonous problems directly. Starting in the minimum vertex point,
where all inputs are at their minimal value, The upper bound curve is found by setting steps along

a path that attempts to maximize the quantity % / %, whereas the lower bound curve is found
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Figure 8. Two dimensional subdomains of the ten dimensional output space, obtained by performing the vertex
method on the IDW interval field.

by setting steps along a path that attempts to minimize it. This approach is especially suited for
identifying ’shuttle’-shaped uncertain regions, which are common for monotonous I/O-relations.

3.3. OBSERVATIONS

Figure 9 again shows the uncertain regions obtained from the IDW case, but the figure is expanded
with the results of the LIFD-analysis. In this figure, the shuttle shapes can be seen very clearly. Our
initial requirement that the IDW region should be a subset of the LIFD-region seems to be met.
The uncertain region obtained from the LIFD is clearly much 'wider’, indicating a less pronounced
dependency between eigenfrequencies in the mid-vertex region (= half-way between the corner
points). It is interesting to take a look at which realisations are responsible for this observation. If
we look at the plot concerning ws and ws, we are specifically interested in the point P, located on
the upper bound curve. Figure 10 shows the input realisation that corresponds to this point. From
the shape, we can see that IDW using only 2 uncertain parameters at the locations mentioned does
not include this configuration in its uncertain set, and therefore it is not propagated to the output.
Putting in an extra uncertain parameter in the middle in-between the two current parameters would
solve this problem. However, the possibility remains that critical configurations in other frequency
pairs remain neglected. Because LIFD takes into account all possible configurations bounded by
the maximum gradient constraint, the LIFD-approach does not suffer from this problem. However,
the increased dimensionality brings along problems of its own, leading to increased computational
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work. The vertex method used by IDW only requires four FE-model evaluations (Actually only
three, because two vertices are equal due to symmetry of the tube). The response surface used by

REC 2016 - M. Imholz, M. Faes, J. Cerneels, D. Vandepitte and D. Moens



378

M. Imholz, M. Faes, J. Cerneels, D. Vandepitte and D. Moens

LIFD was build upon a sample set of 50 samples, after which the remaining work to compute the
uncertain regions was neglectible. The efficient use of the coefficient functions prevents us from
increasing the problem dimension to infeasible heights.

4. Conclusions

The importance of Uncertainty Quantification for the purpose of creating relaible designs cannot
be stretched enough. This paper elaborated and compared two types of possiblistic uncertainty
modelling using the interval as basic tool to represent non-deterministic parameters. Essentially, the
concept of interval fields extend the use of intervals to geometric parameters by taking into acount
possible spatial dependence within such a field. The two concept described here both approach the
problem in a different manner: the IDW-method requires a preliminary choice of the locations where
independent interval parameters will be placed in space, and then interpolates to all other points in
the field. The LIFD starts from a global uncertainty definition by setting bounds on the maximum
derivative and converts this to an interval field that puts an independent interval parameter in each
point of the FE-mesh the field is defined on, thereby ensuring the entire uncertain set is captured at
the cost of high dimensionality. As a final conclusion, one can say that IDW works well in problems
were the sensitive points in the spatial domain are known beforehand and the number of output
parameters is limited, since the sensitive points may vary for each output parameter. When multiple
output parameters are considered, the LIFD provides a more robust approach to find the complete
uncertain output set for a certain minimal gradient constraint.
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