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Abstract: In practice, laboratory experiments are still mostly designed by trial and error method
using the expert knowledge of the material model to be calibrated. This is, however, a difficult task
in the case of advanced models developed to simulate engineering problems by non-linear finite
element techniques. Ruffio et al. (2012) proposed method for optimisation of model-based design of
experiments using robust evolutionary algorithms. Such a method, however suffers from the high
computational demands, which make their application to non-linear finite element (FE) simulations
difficult. In this contribution we present a novel method introducing surrogate of FE model based
on polynomial chaos expansion (PCE) and global formulation of sensitivity matrices. PCE-based
surrogates bring two principal advantages. First, they allow to overcome the computational burden
of many times repeated FE simulations within the process of experiment design optimisation.
Second, they allow fast analytical evaluation of Sobol indices or response variances, which can
be used for quantification of global sensitivity of measured quantities to identified parameters.
The advantages and drawbacks of the proposed method are demonstrated on a simple problem of
two-dimensional nonstationary linear heat transfer. The goal of the experiment design is to find
optimal positions of three thermocouples so as to identify the volumetric thermal capacity and
the conductivities in the two principal directions while considering uncertainties in the prescribed
loading conditions, positions of thermocouples and measurements errors.

Keywords: robust experiment design, global sensitivity, Sobol indices, polynomial chaos, evolu-
tionary optimisation

1. Introduction

The last decade has witnessed growing interest in the development of models that can describe
materials response more realistically. This has inspired many new ideas in phenomenological model
building, in which the subscale phenomena are accounted for by internal parameters. However, up
to the present time, the majority of such advanced models is of a limited practical use, because
they are difficult to calibrate by conventional experiments. An experiment design is often done by
the trial and error method using the expert, often heuristic, knowledge on the calibrated model.
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Such efforts result in a series of single-purpose tests and manual or optimisation-based fitting of
measured data. In the case of complex phenomenological models, however, such an approach is often
not feasible or results in excessive financial and time costs due to a high number of experiments.
Thus, the model complexity brings the need for the design of new experimental procedures. Such
problem goes far beyond traditional curve-fitting procedures, as the key issue is to ensure that
all model parameters are correctly calibrated by activating all relevant phenomena during the
experiment. In addition, the procedure must be robust with respect to inevitable experimental
inaccuracies.

The topic of optimal experiment design was mostly addressed by researchers from the field of
chemical engineering (Franceschini and Macchietto, 2008; Telen et al., 2012) or theoretical biology
(Lindner and Hitzmann, 2006; Van Derlinden et al., 2010). The developed methods, however, suffer
from two principal shortcomings:

- they aim at experiments designed for calibration of models with linear relation between the
parameters and response and

- they consider inevitable errors on experimental observations, but completely neglect possible
errors in parameters of the experiment arising due to its imperfect realisation.

These reasons significantly limit the use of the methods to the case of complex nonlinear material
models calibrated from imprecise experiments. Therefore, our goal is to extend the existing methods
towards non-linear models under consideration of all the inevitable sources of errors.

To facilitate the following discussion, we introduce a scheme of an experiment suitable for
material model calibration in Figure 1. Such an experiment deals with three types of variables: (i)

Experiment

Material parameters (m)

Design variables (d)

Noise variables (b)

Experimental observation (r)+ +

Figure 1. Experimental design problem.

material properties (m) to be identified, e.g. thermal conductivity, heat capacity or water vapour
resistance, (ii) design variables (d) include loading types (e.g. prescribed temperature, moisture flux
or heat transfer on boundary) and loading magnitude as well as positions of sensors (thermometers,
hygrometers etc.) and (iii) noise (b). As emphasized by red arrow, the noise variables must affect
not only the experiment output characterizing measurement errors, but also the design variables
so as to represent the imperfect realisation of the experiment (imprecise positioning of sensors
or imperfections in prescribed loading conditions). The design variables are the only variables
controlled by the experiment designer.
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The goal of such a process is to find the experiment configuration defined by design variables d,
which (i) activates all the phenomena described by the investigated material model (i.e. is maximally
sensitive to all model parameters m) and (ii) reflects the technological aspects, limitations and
inherent experimental errors b. Hence, we speak about model-based experiment design, which needs
to be (i) optimal in terms of the maximum information content on investigated parameters and (ii)
robust to be minimally influenced by experimental errors. Both criteria – optimality and robustness
– may be expressed by sensitivities of experimental observations r to given material properties and
noise variables, respectively, leading to the following definition of the optimisation process:

max
d

Sr,m , (1)

min
d

Sr,b , (2)

s.t. m ∈M , b ∈ B,d ∈ D , (3)

where Sr,m and Sr,b stand for a sensitivity measures of observations r to material propertiesm and
noise variables b, respectively. M is a feasible domain of material parameters typically defined by
an expert on the investigated material model in terms of feasible intervals. The feasible domains of
design variables D and noise variables B are supposed to be given by an expert in experimentation
commonly in the form of feasible intervals for design variables and mean and variance of noise
variables.

All methods reviewed in (Franceschini and Macchietto, 2008) or in many more recent articles
(e.g. (Hametner et al., 2013)) completely omit the imperfections in experimental configuration and
compute the sensitivities Sr,m as local derivatives. The sensitivities are then organised into the
information matrix quantifying the information content of the experiment and measurement errors
enter into the information matrix simply as a scaling factors of the computed sensitivities Sr,m.
Different optimality criteria are then proposed as a scalar measure of the information matrix used
as an objective function for the experiment design optimisation process.

The authors in (Ruffio et al., 2012) employ the method for robust experiment design considering
the uncertainties related to design variables or other known parameters of the experiment. The
uncertainties are included in the modified Fisher information matrix and a new optimality criterion
is proposed to quantify the information content of the experiment.

The remaining important drawback of all the presented methods consists in computing local
derivatives-based sensitivities. In case of nonlinear relation between observations r and investigated
parameters m, the local sensitivity can be evaluated only for a given values of parameters m and
thus their values can be estimated only approximately. One often employed solution is the so-called
worst case or maximin approach computing the sensitivities in a set of points and optimising the
experimental design so as to maximise the minimal obtained sensitivity (Asprey and Macchietto,
2002; Ruffio et al., 2012). Such a sensitivity estimate is rough, but can be quickly evaluated in
case of analytically derived sensitivities. However, if a numerical computation of derivatives is
inevitable, such evaluation of sensitivities becomes computationally prohibitive especially during
an optimisation process requiring large number of iterations.

This limitation can be overcome by two novelties proposed in this paper. The first one consist in
employment of global sensitivities quantifying the sensitivity over the whole prescribed domain of all
the involved parameters. In particular, for a given set of controlled design variables d, the sensitivity
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413
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is evaluated over the domains B and M defined as probability distributions (typically normal and
uniform) of the respective noise and material parameters. There are different criteria measuring the
global sensitivity, mostly based on the computationally expensive sampling procedure, see e.g. (Hel-
ton et al., 2006) for a thorough review. Certain time savings may be achieved by optimised sampling
as presented by our team members in (Janouchová and Kučerová, 2013), but the predictions in case
of high dimensional domains will be still too costly. To overcome this obstacle, the second novelty
of our approach concerns the introduction of computationally cheap surrogate models, commonly
used in the field of robust design optimisation of structures (Beyer and Sendhoff, 2007; Jurecka,
2007) to replace time consuming structural simulations within the optimisation process. Here we
focus on polynomial chaos-based surrogates, which allow for fast analytical evaluation of Sobol
indices without the need for exhaustive sampling (Blatman and Sudret, 2010). The global sensitivity
measures thus come as the by-product of surrogate construction.

In this paper we follow the work of Ruffio et al. (2012) and compare our proposed global
sensitivity-based strategy with their robust worst case scenario-based approach using local sen-
sitivities. We also elaborate the same numerical example of two-dimensional nonstationary linear
heat transfer. In this example, the goal of the experiment design is to find optimal positions of three
thermocouples so as to identify the volumetric thermal capacity and the conductivities in the two
principal directions while considering uncertainties in the prescribed loading conditions, positions
of thermocouples and measurements errors.

2. Inverse Problem - Nonlinear Regression with Random Parameters

We consider a nonlinear model of an experiment resulting in multiple observations f(d, bd,m) =
(. . . , fi(d, bd,m), . . . )T. Here bd denotes a vector of random parameters with prescribed probabil-
ity distribution quantifying our uncertainty related to experimental setting (e.g. imperfections in
values of boundary conditions or loading, imperfections in sensors positioning etc.). Moreover, the
experimental observations r(d) are also contaminated by measurement errors br and thus we write:

r(d) = f(d, bd,m) + br . (4)

We suppose that the true value of material parameters m to be identified is m∗ ∈M , where M is
some given feasible domain of material properties. The estimate m̂ is generally defined as a least
square solution given as

m̂ = argmin
m∈M

∑
i

(ri − fi(d, bd,m))2 , (5)

which is however nontrivial to obtain when the model f(d, bd,m) is a nonlinear function of m
and some robust optimisation algorithm will be necessary. Moreover, uncertainty in parameters bd
resulting in uncertainty in the obtained estimate m̂ is also difficult to obtain due to the nonlinearity
of the model w.r.t. random parameters bd and generally will require some Monte Carlo-based
sampling procedure.

Here we consider an approximate solution of the inverse problem based on the first order Taylor
development of the model f(d, bd,m) around the solution (m̂, bd) given as

fbd,m̂(d, bd,m) = f(d, bd, m̂) + Sbd(bd − bd) + Sm(m− m̂) , (6)
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where

Sbd = Sbd(d, bd, m̂) =


∂f1(·)
∂bd,1

∂f1(·)
∂bd,2

· · ·
∂f2(·)
∂bd,1

∂f2(·)
∂bd,2

· · ·
...

...
. . .

 and Sm = Sm(d, bd, m̂) =


∂f1(·)
∂m1

∂f1(·)
∂m2

· · ·
∂f2(·)
∂m1

∂f2(·)
∂m2

· · ·
...

...
. . .


(7)

denote the sensitivity matrices to noise parameters bd and identified material properties m, respec-
tively.

Using this linearisation, the least square solution (Eq. (5)) can be obtained explicitly as

m̂(d, bd, br) =
(
ST
mSm

)−1
ST
m

[
r(d)− f(d, bd, m̂)− Sbd(bd − bd) + Smm̂

]
(8)

and the variance covariance matrix of m̂ is then given as

cov(m̂) =
(
ST
mSm

)−1
ST
m

[
cov(br) + Sbdcov(bd)S

T
bd

]
Sm . (9)

3. Robust Experiment Design

As described in previous section, the inverse problem considering the random noise parameters and
nonlinear model w.r.t. to both the noise parameters bd as well as to the identified material properties
m is computationally nontrivial and generally requires some sampling procedure for evaluating the
resulting uncertainty in parameter estimates. In the phase of experiment preparation, the goal is to
design the experiment leading to minimal uncertainty in the parameter estimates. This generally
leads to even more complex optimisation problem, where each iteration of a robust optimisation
algorithm involves a solution of the underlying inverse problem.

3.1. Local sensitivity-based robust experiment design

Ruffio et al. (2012) suggest a procedure based on the linearisation described in previous section,
where uncertainty in parameter estimates is expressed by variance covariance matrix obtained
explicitly according to Eq. 9. The authors further propose the so-called F-optimality criterion,
which is similar to commonly used A-optimality criterion given as

A(d, m̂) = trace
([

(Smdiag(m̂))T(Smdiag(m̂))
]−1
)

=
∑
i

(
σ̂mi
m̂i

)2

(10)

and which is equivalent to the sum of relative variances. The difference consists in considering
the effect of the noise parameters, which is neglected by the A-optimality derived only from the
sensitivity matrix Sm. The F-optimality, on the other hand, is derived from the variance covariance
matrix (Eq. (9)) as

F (d, m̂, b) =
√

trace ((cov(m̂)diag(m̂)−1)T(cov(m̂)diag(m̂)−1)) =

√√√√∑
i

(
σ̂mi
m̂i

)2

, (11)
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where variances σ̂mi involves the effect of all noise parameters b.
The F-criterion has, however, two significant drawbacks. First is the aforementioned approxi-

mative linearisation of the nonlinear model of the experiment. Second concerns the requirement of
a prior guess about the values of the identified parameters m, for which the local derivatives in
Eq. (7) are computed. To overcome the latter drawback, Ruffio et al. (2012) propose more robust
FR-criterion based on the principle of worst case scenario considering for identified parameters
some prescribed feasible domain. In particular, instead of evaluating the F-criterion at one single
point m, they consider a set of possible solutions M given by the so-called central star design
points, which are the points in the center of the considered feasible hypercube and in the center
of all its facets, i.e. M = {m,m+ δmiei,m− δmiei} where vectors ei represent canonical base in
parameter domain. Figure 2 shows the set of possible solutions in case of three identified parameters.

m̄1

δm1

δm1

Figure 2. Set of possible solutions M considered for evaluation of robust FR criterion.

The FR-criterion is then given as maximal value of F-criterion obtained for a set of possible
solutions M , i.e.

FM (d, b) = max
{
F (m, b,d), F (m− δmiei, b,d), F (m+ δmiei, b,d)

}
. (12)

The FR-criterion increases the robustness of the obtained solution w.r.t. prior guess about the
values of identified parameters, but this robustness is still limited as the central star design points
M are only very rough approximation of the feasible domain for the identified parameters M . The
approximation quality can be obviously improved by increasing number of points in the set M
(e.g. full factorial design points involving the corners of the hypercube), but it leads to significant
increase of computational effort due to multiple evaluations of the F-criterion. Here we have to
emphasize that computational complexity of F-criterion consists in evaluation of local derivatives
in Eq. (7), which can be very fast if an explicit analytical expression is available. Otherwise –
and very commonly in finite elements-based models – numerical and much more computationally
demanding evaluation is inevitable.

3.2. Global sensitivity-based robust experiment design

In this contribution, we propose a new formulation of an optimality criterion in robust experiment
design optimisation, which is derived to achieve two goals. First, we aim at increasing the robustness
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of the criterion by considering whole feasible domain for identified parameters M and not only
its rough approximation based on central star design points. Second, we focus on computational
feasibility in case of complex nonlinear models of material behaviour. To that purpose, we propose
a new criterion based on global sensitivity matrix consisting of Sobol indices derived analytically
from coefficients of polynomial chaos-based approximation of model responses.

So as to build a polynomial chaos expansion, we consider all problem variables (d, b,m) as
random variables with prescribed probability distribution. In case of design variables and material
properties, where only feasible domain is typically prescribed, we consider those variables as uni-
formly distributed within the feasible domain. As the noise variables are often defined as normally
distributed variables, we assume that all the variables can be transformed into the standard normal
variables ξ via linear (in case of normally distributed noise variables) or nonlinear (i.e. exponen-
tial in case of uniformly distributed design variables and material properties) transformation as
(d, b,m) = g(ξ = (ξd, ξb, ξm)). We further assume all the problem variables ξ to be statistically
independent. For an appropriate evaluation of Sobol indices, which correspond to proportional
variances of model response, we need to involve all the relevant variables in our model of the
experiment including measurement errors br. Therefore we rewrite the Eq. (4) as

r(d) = f(d, b,m) , (13)

where vector b = (bd, br). According to Doob-Dynkin lemma (Bobrowski, 2005), the model response
f(d, b,m) = f(ξ) is a random vector which can be expressed in terms of the same random
variables ξ. Since ξ are independent standard Gaussian random variables, Wieners polynomial
chaos expansion (PCE) based on multivariate Hermite polynomials1 – orthogonal in the Gaussian

measure – {Hα(ξ)}α∈J is the most suitable choice for the approximation f̃(ξ) of the model response
f(ξ), see (Xiu and Karniadakis, 2002), and it can be written as

f̃(ξ) =
∑
α∈J

fαHα(ξ) , (14)

where uα is a vector of PC coefficients and the index set J ⊂ N0 is a finite set of non-negative integer
sequences with only finitely many non-zero terms, i.e. multi-indices, with cardinality |J | = R. Of
course, if any other type of standard random variables is more suitable (such as uniform variables),
the Hermite polynomials can be replaced by other type of polynomial orthogonal w.r.t. chosen
probability measure (e.g. Legendre polynomials in case of uniform variables).

Construction of PCE-based approximation is of course much more complex than construction
of the first order Taylor series. Nevertheless, we recall again that the local sensitivities in Taylor
development need to be recomputed for any new choice of design variables within the process of
experiment optimisation. In our approach, the PCE constructions is, however, the computationally
most demanding step, which needs to be done only once, before starting the experiment optimisa-
tion. Computational feasibility can be also achieved by considering low polynomial order in PCE
(however with the risk of insufficient accuracy of the resulting approximation) or by employing

1 We assume the full PCE, where number of polynomials r is fully determined by the degree of polynomials p and
number of random variables s according to the well- known relation r = (s+p)!

(s!p!)
.
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efficient algorithms for computing PC coefficients, see e.g. (Xiu, 2009). One advantage of PCE-
based model approximation is that it is well developed for nonlinear models based on finite element
method. But the true beauty of PCE consists in the possibility of an analytical derivation of global
sensitivity matrix based on Sobol indices, see (Blatman and Sudret, 2010), according to

Sfk,ξi =

∑
α∈Ii f

2
k,αE[H2

α(ξ)]∑
α∈J\{0} f

2
k,αE[H2

α(ξ)]
, (15)

where Ii determines the polynomials involving the terms depending only on ξi and polynomial
degrees of other variables are null, i.e.

Ii = {α ∈ Ns : 0 ≤
s∑
j=1

αj ≤ p, αl = 0⇐⇒ l /∈ (i),∀l = 1, . . . , s}, (16)

and

E[H2
α(ξ)] =

∫
H2
α(ξ)dP(ξ) =

∫
· · ·
∫
s

s∏
j=1

(H2
α,j(ξj))dP(ξ1) · · · dP(ξs) =

s∏
j=1

pα,j !, (17)

where pα,j is a polynomial degree of variable ξj in the polynomial Hα.
As we aim at using the Sobol indices as components of global sensitivity matrix to be used for

formulation of an optimality criteria, we introduce a simple new type of Sobol indices, so-called
additive sensitivity indices (ASI), which consist of the sensitivity indices of the considered variable
and a part of the sensitivity indices corresponding to the variable’s combination with another
variables, these indices are divided by the number of appeared variables to get their particular
part. The formula for the additive sensitivity indices is

S∗fk,ξi =

∑
α∈Ii f

2
k,αE[H2

α(ξ)] +
∑
α∈I∗i

1/n∗
if

2
k,αE[H2

α(ξ)]∑
α∈J\{0} f

2
k,αE[H2

α(ξ)]
, (18)

where n∗i is a number of variables included in the polynomials from the set I∗i defining all the
polynomials involving ξi except the polynomials from Ii , i.e.

I∗i = {α ∈ Ns : 0 ≤
s∑
j=1

αj ≤ p,αi 6= 0 ∧αl 6= 0⇐⇒ l 6= i, ∀l = 1, . . . , s}. (19)

The reason is that original Sobol indices do not involve sensitivity to mixed terms involving multiple
variables, which can be, however, significant and thus we do not want to neglect them. On the other
hand, total sensitivity indices account for mixed terms in every index corresponding to variable
present in the term. It means that sensitivity to these mixed terms will be accounted in the
sensitivity matrix several times. This can lead to increased emphasis to mixed terms in comparison
to terms depending uniquely on a single variable. The proposed ASI thus aim at including the
sensitivity to all combinations of model variables along with their equalised significance. As a
result, the sum of all ASI obtained for a chosen response component is equal to one and the indices
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can be viewed as relative indices providing proportional significance of particular model variables
for the response component.

In Eq. (14), the PCE is constructed also as a function of standardised design variables ξd,
but the sensitivity to those variables is of course not relevant for the experiment design. Design
variables are involved only to allow an immediate analytical reconstruction of PCE as a function of
only material properties and noise variables for given choice of design variables. At each step of an
experiment design optimisation, the design variables ξd in PCE (Eq. (14)) are replaced by specific
values ξχd chosen by the governing optimisation algorithm resulting in simpler PCE given as

f̃ξχd
(ξm, ξb) = f̃(ξ)|ξd=ξχd

. (20)

Based on Eq. (20), we can define the global sensitivity matrix oppositely as a function of chosen
values of design variables ξχd, which were handled as constants so far:

S∗(ξχd) =

 · · · S
∗
f1,ξmi

(ξχd) · · · S∗f1,ξbi (ξ
χ
d) · · ·

· · · S∗f2,ξmi (ξ
χ
d) · · · S∗f2,ξbi (ξ

χ
d) · · ·

...
...

 . (21)

Here, sum of each line equals again to one and particular indices provide again the proportional
significance of particular model variable (given by matrix column) to particular response component
(given by matrix line). As the goal is to maximise the sensitivity to material properties and minimise
the sensitivity to noise variables, from the formulation of global sensitivity matrix given in Eq. 21 it
follows that maximising the sensitivity to material properties results in minimising the sensitivity
to noise variables as by product. Hence, it is sufficient to evaluate only the part of sensitivity matrix
corresponding to material properties given as

S∗m(ξχd) =

 · · · S
∗
f1,ξmi

(ξχd) · · ·
· · · S∗f2,ξmi (ξ

χ
d) · · ·

...

 , (22)

where the sum of indices in each line is smaller or optimally equal to one.
As a last step we need to formulate a scaler-valued optimality criterion as some norm of the sen-

sitivity matrix S∗m. Since the commonly used optimality criteria such as A-optimality, D-optimality,
E-optimality or others are derived for application to local sensitivity matrix obtained in linear design
problem, their meaning is not fully preserved when applied to global sensitivity matrix. Therefore
some further deeper research for suitable optimality criterion in case of global sensitivity matrix
needs to be executed. It is, however, beyond the scope of this paper and we apply those criteria
directly and only compare their behaviour on the illustrative example described in the following
chapter. In particular, we implement these criteria in the following way:

A∗(S∗m) = trace

([
(S∗m)T S∗m

]−1
)
, (23)

D∗(S∗m) = det
(

(S∗m)T S∗m
)
, (24)

E∗(S∗m) = cond
(

(S∗m)T S∗m
)
, (25)
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respectively. And we emphasise that once the PCE-based approximation of model response is
constructed, the criteria are defined as explicit analytical functions of design variables which make
the optimisation of experiment design very computationally efficient. The criteria can of course be
non-smooth or multi-modal, but any evolutionary algorithm requiring high number of iterations
can be successfully applied. Here, in particular, we apply real-valued genetic algorithm GRADE
extended by niching strategy CERAF allowing him to escape from local extremes (Kucerova, 2007).

4. Numerical Example

We use the example of experiment design problem elaborated in (Ruffio et al., 2012) and previously
in (Sawaf et al., 1995). The example deals with two-dimensional linear nonstationary heat problem
govern by energy balance equation

C
∂θ

∂t
= λx

∂2θ

∂x2
+ λy

∂2θ

∂y2
(26)

on the spatial domain given as 0 ≤ x ≤ lx = 5 cm and 0 ≤ y ≤ ly = 5 cm and time domain given
as 0 ≤ t ≤ τ = 60 s, see Figure 3.

y

x

lx = 0.05 m

q = 25000 Wm−2

q
=

25
00
0
W

m
−
2

l y
=

0.
05

m

Initial temperature:

T(0) = 0 ◦C

Steps of measurement:

ti = 1, . . . , τ s

τ = 60 s

Material parameters:

λx, λy, C

Figure 3. Experiment setup.
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The boundary and initial conditions are defined by

−λx
∂θ

∂x
(x = 0) = q, −λy

∂θ

∂y
(y = 0) = q (27)

−λx
∂θ

∂x
(x = lx) = 0, −λy

∂θ

∂y
(y = ly) = 0 (28)

θ(x, y, 0) = 0 , (29)

where q = 25000Wm−2. The specimen consists of an orthotropic homogeneous material with three
material parameters to be identified: two thermal conductivities λx and λy in principal directions
and the thermal volumetric capacity C, i.e.m = (λx, λy, C). Their a priori selected feasible domains
are

λx ∈ [0.3; 0.7] Wm−1K−1 (30)

λy ∈ [3.0; 7.0] Wm−1K−1 (31)

C ∈ [1400000; 1800000] Jm−3K−1 (32)

The temperature is supposed to be measured by three sensors, each performing 60 measurements
with the acquisition period ∆t = 1 s. The aim of the experiment design problem is to find the
optimal positions of the three sensors, i.e. d = (dx1, dy1, dx2, dy2, dx3, dy3).

Once the experiment is realised, its parameters will not be exactly at designed values and thus
we assume several parameters as random variables to account for the underlying noise. Therefore we
consider following noise variables within the process of experiment design optimisation, see Figure
4:

− Heat flux density q is supposed to be constant during the measuring time period, but its
mean value is perturbed by the normally distributed noise bq with the zero mean and standard
deviation σq = 50 Wm−2.

− Temperature sensors provide results disturbed by additive Gaussian measurement noise br with
zero mean and standard deviation σr = 0.1◦C.

− Sensors are supposed to be placed at designed positions d which are subject also to Gaussian
noise bx with zero mean and standard deviations σxi = σyi = 0.5 mm.

Ruffio et al. (2012) profits from the simplicity of the elaborated example consisting in possibility
to derive the model response and local sensitivity matrix analytically. On the other hand, we
want to present more realistic scenario, where experiment simulation involves finite elements-
based discretisation. First, we transform all the involved variables into standard Gaussian variables
(ξm, ξd, ξbq , ξbx , ξbr). Then we write the discretised model as

A(ξm, ξbq)u = q (33)

and we construct its PCE-based approximation in every response component as

ũ(ξm, ξbq) =
∑
α∈I

βαψα(ξm, ξbq) . (34)
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Figure 4. Design and noise variables considered in experiment design optimisation problem.

To obtain the temperature values corresponding to k-th sensor, we have to determine a specific
finite element, where the sensor is located, and the polynomial expansions in its nodes

ũk(ξm) = (ũ1(ξm), ũ2(ξm), ũ3(ξm))T , (35)

see Figure 5. By evaluating shape functionsNk(dk(ξd)) and their gradient Bk(dk(ξd)) = ∇Nk(dk(ξd))

u1

u2

u3

A2

(dx; dy)

bx

by

Figure 5. Scheme of a triangular finite element with the interior sensor at coordinates (dx + bx, dy + by).

(with ∇ = (∇x,∇y)T) at the designed position of a sensor dk = (dx, dy) as

Nk(dk(ξd)) = (N1(dk(ξd)), N2(dk(ξd)), N3(dk(ξd))) =

(
A1(ξd)

A
,
A2(ξd)

A
,
A3(ξd)

A

)
(36)
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we obtain an explicit function for model response component corresponding to chosen position of
sensor including all relevant noise variables as

f̃k(ξm, ξd, ξb) = Nk(ξd)ũk(ξm) + bd(ξb) [Bk(ξd)] ũk(ξm) + br(ξbr) =

= [Nk(ξd) + bd(ξb) [Bk(ξd)]] ũk(ξm) + br(ξbr) , (37)

which is in fact also a polynomial expansion and can be written as

f̃k(ξm, ξd, ξb) =
∑
α∈I

βαψα(ξm, ξd, ξb) . (38)

In this polynomial expansion, we treat the design variables as constants and get an explicit formu-
lation for global sensitivity matrix according to Eq. (22), which can be then quickly evaluated at
every iteration of the experiment design optimisation process.

5. Results

As the first numerical study we compare the performance of optimality criteria defined in Eqs.
(23) – (25) and the A∗, D∗ and E∗-optimal designs are plotted in the first three columns of Table
I, respectively. All these designs are selected as best among the set of local optima determined
by GRADE+CERAF algorithm. Last two columns are occupied by two best locally optimal solu-
tions presented in (Ruffio et al., 2012). All experiment designs are employed in a single simulated
experiment, where true values of material parameters are given according to (Ruffio et al., 2012) as

λ∗x = 0.6 Wm−1C−1 ,

λ∗y = 4.7 Wm−1C−1 ,

C∗ = 1700000 Jm−3C−1 .

In the local sensitivity-based approach, an initial guess about the values of material properties
is required for computing the local sensitivities. This guess again according to (Ruffio et al., 2012)
is

λx = 0.5 Wm−1C−1 ,

λy = 5.0 Wm−1C−1 ,

C = 1600000 Jm−3C−1 .

In order to compare the quality of particular experiment designs, an inverse analysis is performed
in a simplified – linearised – way as described in Section 2 and parameter estimates along with their
variances are computed according to Eqs. (8) and (9). Resulting relative variances in parameter
estimates obtained for particular experimental designs are written in Table I.

By comparing these results we may conclude that the applied optimality criteria do not differ
too significantly. Especially A∗- and D∗-optimality provide very similar results. The E∗-optimality
outperforms the others by providing almost half of the variances obtained by A∗- and D∗-optimality.
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Table I. Comparison of experimental designs within a single inverse analysis.

A∗(S∗
m) D∗(S∗

m) E∗(S∗
m) F (d, m̂, b):U1 F (d, m̂, b):U2

σλx/λx 19.1% 20.2% 12.1% 4.6 % 8.0 %

σλy/λy 16.2% 13.7% 5.6% 7.5 % 2.9 %

σC/C 10.3% 10.4% 5.1% 2.9 % 2.0 %

Nevertheless, the E∗-optimality does not outperform the results obtained by Ruffio et al. using the
problem linearisation and local sensitivity matrix.

One possible explanation is that the true values of the material properties are very close the
starting guess used for computation of local sensitivities. Therefore we have performed a set of 25
simulated experiments for changing values of material properties on a regular grid 5x5x5 within
the feasible domain. For each experiment, the same inverse analysis was executed as in the first
example and minimal and maximal values of estimated parameter variances are listed in Table II.

Table II. Case study: min-max.

σλx/λx σλy/λy σC/C

F (d, m̂, b):U2 7.9 – 31.9 % 1.7 – 6.3 % 1.53 – 4.3 %

A∗(S∗
m) 17.6 – 22.0 % 15.3 – 24.2 % 8.63 – 17.3 %

D∗(S∗
m) 18.5 – 25.2 % 10.5 – 20.2 % 8.55 – 16.4 %

E∗(S∗
m) 10.6 – 14.4 % 2.5 – 6.2 % 3.26 – 7.2 %

Here it can be already concluded that the E∗-optimal design has a comparable quality to U2-
design obtained by Ruffio et al. and it still outperforms the A∗-optimal and D∗-optimal designs.

6. Conclusions

The proposed contribution presents a new method for designing robust and optimal experiments,
which is developed with regard on its practical applicability to finitThe proposed contribution
presents an original method for designing robust and optimal experiments, which is developed with
regard on its practical applicability to finite element-based models and its computational feasibility.
The method is based on an explicit formulation of global sensitivity matrix, which constituents are
defined as Sobol indices derived analytically from the polynomial chaos-based approximation of
model response. Employing higher order polynomials in model surrogate allows to account for
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the nonlinearity of the model as well as for the prescribed large feasible domain of the material
properties to be estimated. No prior expert guess about specific parameter values is needed as it
is in the case of local sensitivity-based procedure described in (Ruffio et al., 2012). Construction
of the higher order polynomial surrogate is of course computationally intensive task. Nevertheless,
development of efficient computational tools for polynomial chaos-based uncertainty propagation
is a scientific topic still atracting the attention of many researchers pushing forward the process in
this field. Moreover, the construction of the PCE-based surrogate needs to be carried out only once
before the actual start of the experiment design process. During the optimisation, only very fast
evaluation of Sobol indices defined explicitely from the PC coefficients is needed at each iteration
of the optimisation process.

The proposed method is compared here with the local sensitivity-based method on a simple
example of nonstationary linear heat transfer. It is shown that the both method provides very
similar values of variances of parameter estimates. The comparison is now, however, very modest.
We suspect that the model of the experiment on the feasible domain of material properties is here
only mildly nonlinear and thus the robustness of the proposed method cannot be fully appreci-
ated. Moreover the comparison is performed using the linearised inverse analysis, while full Monte
Carlo-based inverse analysis would be also more appropriate to verify the quality of the obtained
experimental designs. These topic will be thus next steps in our future work.
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Sawaf, B., M. N. Özisik and Y. Jarny. An inverse analysis to estimate linearly temperature dependent thermal
conductivity components and heat capacity of an orthotropic medium. International Journal of Heat and Mass
Transfer, 38(16):3005–3010, 1995.

Telen, D., F. Logist, E. Van Derlinden, I. Tack and J. Van Impe. Optimal experiment design for dynamic bioprocesses:
A multi-objective approach. Chemical EngineeringScience, 78:82–97, 2012.

Van Derlinden, E., K. Bernaerts and J. F. Van Impe. Simultaneous versus sequential optimal experiment design for
the identification of multi-parameter microbial growth kinetics as a function of temperature. Journal of Theoretical
Biology, 264:347–355, 2010.

Xiu, D. Fast Numerical Methods for Stochastic Computations: A Re- view. Communications in Computational
Physics, 5(2–4):242–272, 2009.

Xiu, D. and G. E. Karniadakis. The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations. SIAM
Journal on Scientific Computing, 24(2):619–644, 2002.
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426




