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Abstract: The standard way to numerically calculate integrals such as the ones featured in
estimation of statistical moments of functions of random variables using Monte Carlo procedure
is to: (i) perform some sampling from the random vector, (ii) perform an approximation to the
integrals using averages of the functions evaluated at the selected sampling points. If the Nsim

points are selected with an equal probability (with respect to the joint distribution function) such
as in Monte Carlo sampling, the averages use equal weights 1/Nsim. The problem with Monte Carlo
sampling is that the estimated values exhibit a large variance due to the fact that the sampling
points are usually not spread uniformly over the domain of random variables. One way to improve
the accuracy would be to perform a more advanced sampling.

The paper explores another way to improve the Monte Carlo integration approach: by considering
unequal weights. These weights are obtained by transforming the sampling points into sampling
probabilities (points within a unit hypercube), and subsequently by associating the sampling points
with weights obtained as volumes of regions/cells around the sampling points within a unit hy-
percube. These cells are constructed by the Voronoi tessellation around each point. Supposedly,
this approach could have been considered superior over the naive one because it can suppress
inaccuracies stemming from clusters of sampling points.

Keywords: Monte Carlo sampling, estimation of statistical moments, Voronoi tesselation, weighted
average, probability weights

1. Introduction

Monte Carlo estimation of statistical integrals is encountered in numerous applications. A typical
example is the computer exploration of functions that feature random variables. These random
variables form anNvar-dimensional vector, whereNvar is the number of random variables considered.
In computer experiments the first step is a selection of optimal sample set, i.e. selection of Nsim

points from the Nvar dimensional space. These points then form the sampling plan which is a Nsim×
Nvar matrix. The methods used for formulating the plan of experimental points are collectively
known as Design of Experiments (DoE). The purpose of DoE is to provide a set of points lying
inside a chosen design domain that are optimally distributed; the optimality of the sample depends
on the nature of the problem. Various authors have suggested intuitive goals for good designs,
including “good coverage”, the ability to fit complex models, many levels for each factor/variable,
and good projection properties. At the same time, a number of different mathematical criteria have
been put forth for comparing designs.
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M. Vořechovský, V. Sad́ılek and J. Eliáš

The design of experiments is typically performed in a hyper-cubical domain of Nvar dimensions,
where each dimension/variable, Uv, ranges between zero and one (v = 1, . . . , Nvar). This design
domain is to be covered by Nsim points as evenly as possible as the points within the design
domain represent sampling probabilities. The probability that the i-th experimental point will be
located inside some chosen subset of the domain must be equal to VS/VD, with VS being the subset
volume and VD the volume of the whole domain (for unconstrained design VD = 1). Whenever this
is valid, the design criterion will be called uniform. Even though such uniformity is conceptually
simple and intuitive on a qualitative level, it is somewhat complicated to describe and characterize it
mathematically. Though some problems do not require this uniformity, it is the crucial assumption
in Monte-Carlo integration and its violation may lead to significant errors (Eliáš and Vořechovský,
2016; Vořechovský and Eliáš, 2015).

There exist many other criteria of optimality of the sampling plan: e.g. the Audze-Eglājs (AE)
criterion (Audze and Eglājs, 1977) later generalized into the so-called φ criterion, the Euclidean
MaxiMin and MiniMax distance between points, various measures of discrepancy, criteria based on
correlation (orthogonality), designs maximizing entropy and many others. It should also be noted
that an experimental design can be also obtained via so-called “quasi-random” low-discrepancy
sequences (deterministic versions of MC analysis) that can often achieve reasonably uniform sample
placement in hypercubes (Niederreiter, Halton, Sobol’, Hammersley, etc.).

As mentioned above, the selection of the sampling points is a crucial step when evaluating
approximations to integrals as is performed in Monte Carlo simulations (numerical integration),
where equal sampling probabilities inside the design domain are required.

In this article, it is assumed that the sampling points have already been selected and they are
not spread uniformly over the design domain. A typical example may be a sample selected using
crude Monte Carlo sampling. The article considers the possibility to improve quality of Monte
Carlo estimation with such a given sample. The only possibility to improve the estimations of
the integrals is to vary the weights associated with individual sampling points. Motivated by the
MiniMax criterion of optimality and also by various numerical integrating schemes, we explore
the possibility to improve the quality of statistical estimations using Voronoi tessellation, i.e. a
particular form of partitioning of the design domain around given sampling points. The design
domain to be partitioned is the unit hypercube described above and therefore the volumes around
individual sampling points represent weights (probabilities) to be used in the weighted averages
that estimate the integrals.

2. Statistical Moment Estimation Using Monte Carlo Sampling

As mentioned in the introduction, one of the frequent uses of DoE is statistical sampling for Monte
Carlo integration. We present the application of statistical sampling to the problem of estimating
statistical moments of a function of random variables. In particular, a deterministic function,
Z = g (X), is considered, which can be a computational model or a physical experiment. Z is
the uncertain response variable (or generally a vector of the outputs). The vector X ∈ RNvar is
considered to be a random vector of Nvar continuous marginals (input random variables describing
uncertainties/randomness) with a given joint probability density function (PDF).
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Estimation of the statistical moments of variable Z = g (X) is, in fact, an estimation of integrals
over domains of random variables weighted by a given joint PDF of the input random vector, fX (x).
We seek the statistical parameters of Z = g (X) in the form of the following integral:

E[S [g (X)]] =

∞∫
−∞

. . .

∞∫
−∞

S [g (x)] dFX (x) (1)

where dFX (x) = fX (x) · dx1 dx2 · · · dxNvar is the infinitesimal probability (FX denotes the joint
cumulative density function) and where the particular form of the function S [g (·)] depends on
the statistical parameter of interest. For example, to gain the mean value of g (·), S[g (·)] = g (·);
higher statistical moments of Z can be obtained by integrating polynomials of g (·). The probability
of failure (an event defined as g(·) < 0) is obtained in a similar manner: S [·] is replaced by the
Heaviside function (or indicator function) H [−g (X)], which equals one for a failure event (g < 0)
and zero otherwise. In this way, the domain of integration of the PDF is limited to the failure
domain.

In Monte Carlo sampling, which is the most prevalent statistical sampling technique, the above
integrals are numerically estimated using the following procedure: (i) draw Nsim realizations of
X that share the same probability of occurrence 1/Nsim by using its joint distribution fX (x); (ii)
compute the same number of output realizations of S[g (·)]; and (iii) estimate the desired parameters
as arithmetical averages. We now limit ourselves to independent random variables in vector X. The
aspect of the correct representation of the target joint PDF of the inputs mentioned in item (i) is
absolutely crucial. Practically, this can be achieved by reproducing a uniform distribution in the
design space (unit hypercube) that represents the space of sampling probabilities.

Assume now a random vector U that is selected from a multivariate uniform distribution in such
a way that its independent marginal variables Uv, v = 1, . . . , Nvar, are uniform over intervals (0; 1).
A vector with such a multivariate distribution is said to have an “independence copula” (Nelsen,
2006)

C(u1, . . . , uNvar) = P(U1 ≤ u1, . . . , UNvar ≤ uNvar) =

Nvar∏
v=1

uv (2)

These uniform variables can be seen as sampling probabilities: FXv = Uv. The joint cumulative dis-
tribution function then reads FX (x) =

∏
v FXv =

∏
v Uv, and dFX (x) =

∏
v dUv. The individual

random variables can be obtained by inverse transformations

{X1, . . . , XNvar} = {F−1
1 (U1), . . . , F−1

Nvar
(UNvar)} (3)

and similarly the realizations of the original random variables are obtained by the component-wise
inverse distribution function of a point u (a realization of U) representing a sampling probability

x = {x1, . . . , xNvar} = {F−1
1 (u1), . . . , F−1

Nvar
(uNvar)} (4)
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With the help of this transformation from the original to the uniform joint PDF, the above
integral in Eq. (1) can be rewritten as

E[S [g (X)]] =

1∫
0

. . .

1∫
0

S [g (x)] dC(u1, . . . , uNvar)

=

∫
[0,1]Nvar

S [g (x)]

Nvar∏
v=1

dUv (5)

so that the integration is performed over a unit hypercube with uniform unit density.
We now assume an estimate of this integral by the following statistic (the average computed

using Nsim realizations of U , namely the sampling points uj (j = 1, . . . , Nsim))

E[S [g (X)]] ≈ 1

Nsim

Nsim∑
i=1

S [g(xi)] (6)

where the sampling points xi = {xi,1, . . . , xi,v, . . . , xi,Nvar} are selected using the transformation
in Eq. (4), i.e. xi,v = F−1

v (ui,v), in which we assume that each of the Nsim sampling points ui

(i = 1, . . . , Nsim) were selected with the same probability of 1/Nsim. Violation of the uniformity
of the distribution of points ui in the unit hypercube may lead to erroneous estimations of the
integrals.

If the sampling points are not selected carefully with respect to equal probabilities in the design
domain, the possibility to improve the accuracy in Eq. (6) is to use weights different from 1/Nsim.
These weights reflect the probability content of the cells around individual sampling points

E[S [g (X)]] ≈
Nsim∑
i=1

S [g(xi)] · wi (7)

The proposed approach aims at finding appropriate weights that are calculated considering
the spatial distribution of the points. Obviously, unvisited regions of the design domain can not
be explored by a nonuniform design. Partitioning the space into cells around the given sampling
points may help to reduce probabilities associated with points that are participating in clusters of
points. Voronoi tessellation has been selected for partitioning of the design space into volumes that
are used as the weights wi, i = 1, . . . , Nsim. The following section describes the Voronoi tessellation
procedures.

3. Weights Obtained as Volumes of Voronoi Regions

The weights associated with the design points are considered as volumes of Voronoi regions (Au-
renhammer, 1991) computed on the sampling points. The Voronoi tessellation in Nvar-dimensional
space results in Nsim convex polyhedrons Vi that encloses all the points that are closer to i-th
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Figure 1. Example of clipped and periodic tessellation for Nvar = 2 and Nsim = 16 with help of reflected and
periodically repeated auxiliary points, respectively.

sampling point than any other. Defining the distance of point u from sampling point ui as di(u),
the Voronoi region associated with i-th sampling point can be formally defined as

Vi =
{
u ∈ RNvar | ∀ j 6= i : di(u) ≤ dj(u)

}
(8)

Two alternatives of Voronoi tessellation that differ in the boundary regions are investigated:

− clipped Voronoi tessellation that is limited to the unit hypercube only

Vi =
{
u ∈ 〈0, 1〉Nvar | ∀ j 6= i : di(u) ≤ dj(u)

}
(9)

− periodic Voronoi tessellation which assumes that every sampling point is periodically repeated
in the space along all the dimensions.

These two different concepts are demonstrated in Figure 1. The reason for studying the periodic
tessellation is that the authors have shown recently (Eliáš and Vořechovský, 2016; Vořechovský and
Eliáš, 2015) that the presence of boundaries in the hypercubical design domain cause problems.
Briefly, one may think of a problem of packing (hyper)balls into a (hyper)cube. It is clear that
the boundary is responsible for a kind of wall-effect. It has been shown (Eliáš and Vořechovský,
2016; Vořechovský and Eliáš, 2015) that this problem can be removed by considering periodic
extension of the design domain. The balls then permeate through the boundaries without interacting
with them, see Figure 1 right.

The clipped Voronoi diagrams (Chan et al., 1995; Yan et al., 2013) are used mostly for con-
struction of meshes and therefore available software to compute such tessellation is limited to two
and three dimensional space. A similar situation exists for periodic Voronoi tessellation (Yan et al.,
2011; Rycroft, 2009). In the field of design of experiments more than three variables (factors) can be
present and therefore the tessellation must be performed in higher dimensions. In this contribution,
Qhull software (Barber et al., 1996) is utilized for both clipped and periodic tessellations because
it can compute Voronoi tessellation for arbitrary dimension. On the other hand, it cannot work
directly with neither clipped nor periodic boundary condition and therefore simple tricks are used.
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These tricks consist in manipulations of the design domain (together with the sampling points
contained) by adding new design domains around it. In order to obtain the clipped structure, the
design domain is extended by reflecting the original design domain along each dimension. There
are two reflections of the original unit interval along each dimension to obtain intervals 〈−1, 0〉
and 〈1, 2〉. Therefore, the tessellation is performed on Nsim

(
1 + 2Nvar

)
points. The use of reflection

automatically provides edges between cells that coincide with the boundary of the original design
domain and therefore the volumes outside the design domain can be ignored. The use of reflection
to obtain clipped tessellation was proposed in (Pronzato and Müller, 2012).

The periodic structure is obtained by periodic extension (replication) of the original design
domain along each direction and additionally the replication must be performed to obtain all the
“corner” domains to fill a hypercube 〈−1, 0〉Nvar . Therefore, Nsim · 3Nvar points in total are used for
the periodic tessellation.

The computational times needed for the both tessellation types can be substantially reduced if
it involves only reflected or periodically repeated points that are close to the original hypercube,
because only these points affects the tessellation inside the hypercube. Unfortunately, no effective
algorithm has been developed yet to identify such points and therefore the full set of points must
be involved for certainty.

In both alternatives, the weights for individual sampling points are the volumes of regions
surrounding points. There are three algorithms available for the volume computation: (i) direct
integration, (ii) Monte-Carlo integration and (iii) division into simplexes for which analytical
formula is available. The first two algorithms are nicely elucidated in (Ong et al., 2003). Here,
we perform the third algorithm. Each Voronoi region is (with a help of the Qhull) divided into
simplexes. Each simplex has Nvar + 1 vertices denoted vi. The total volume of the region is simply
the sum of simplex volumes, that are calculated based on the determinant of coordinate matrix.

Vsimplex =

∣∣∣∣∣∣∣∣∣
1

Nvar!


v1 − v0

v2 − v0
...

vNvar − v0


∣∣∣∣∣∣∣∣∣ (10)

These volumes are used directly as weights of sampling points enclosed withing these cells.

4. Frequency Analysis of Weights

It turns out to be important to see (i) whether the weights are very scattered compared to 1/Nsim

and, (ii) whether their magnitude tend to depend on the position inside the domain. This is
achieved by studying Nrun = 1000 realizations of samples, each having Nsim points within an
Nvar-dimensional hypercube. For each sample, both types of Voronoi tessellation is constructed
and the weights are statistically processed.

The results will be presented for two sampling schemes: the classical (crude) Monte Carlo
sampling without any optimization (MC-RAND) and LHS (Latin Hypercube Sampling) optimized
using the periodic criterion (LHS-PAE). PAE stands for an enhanced version of the Audze-Eglais
criterion, see (Eliáš and Vořechovský, 2016; Vořechovský and Eliáš, 2015).
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Figure 2. Voronoi weights for MC-RAND and LHS-PAE sampling plans (Nvar = 2, Nsim = 16). Comparison of the
clipped and periodic tessellations.

Figure 2 shows one sample (Nsim=16) of a bivariate random vector Uv for both sampling
schemes. For the two sampling schemes, both types of Voronoi diagrams (clipped and periodic)
are constructed and visualized with colors depending on the area. The LHS-PAE sampling plans
show more uniform distribution of points because the PAE-optimized LH-sampling better avoids
clustering and limit the occurrence of empty regions. Therefore, the cells in LHS-PAE have similar
volumes and the sampling points are closer to the centers of Voronoi regions. The small differences
among weights in LHS-PAE with periodic tessellation suggest that weighting will not make much
difference in comparison with integrals evaluated using equal weights 1/Nsim. The MC-RAND
sampling plans suffer from point clustering and therefore, high variability in volumes of the Voronoi
cells is observed. It should be noticed that the choice of tessellation (clipped vs. periodic) affects
only the boundary regions while the central part of the hypercube is identical.

In order to judge about the spatial distribution of weights within the design domain, the above-
mentioned Nrun=1000 realizations of samples accompanied by Voronoi tessellations were prepared
and for each spatial location, the mean value and standard deviation of weights occurring at that
location have been calculated. The weights (volumes of Voronoi regions Vsimplex in a hypercube)
depend on the type of tessellation but they are independent of the sampling method (MC vs.
LHS). The bivariate histograms in Figure 3 document the dependency of the mean value and the
standard deviation of Voronoi region volumes on the position of the sampling point in a square. In
the case of clipped tessellation, both the mean value and the standard deviation of weights are not
uniform in the hypercube. Three zones can be distinguished: (a) the boundary region where the
mean value (shown in blue) of weights is underestimated. The boundary strip is followed/balanced
by (b) zone parallel to the boundary where the weights are overestimated (see the yellow to red
color) and finally, (c) the bulk zone sufficiently far from the boundary, where the weights (volumes)
are constant on average. The width of the two boundary zones is decreasing with increasing sample
size Nsim.

Such a biased representation of different regions in the hypercube partitioned by the clipped
tessellation must have consequences in Monte Carlo integration. If the points are sampled uniformly,
and that is indeed the case of both MC-RAND and LHS-PAE, some error must be introduced due to
introduction of nonuniform weighting. If the functions are sensitive to inaccuracies in representation
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447
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Figure 3. Bivariate histograms of the mean value and the standard deviation of cell volumes for both sampling plans
and both tessellation alternatives (Nvar = 2, Nsim = 16 and Nrun = 1000 realizations).

of the boundary regions, their weighted MC integration may yield biased results. Therefore we
conclude that the clipped tessellation generally should not be used for weighting in MC integration.

The periodic tessellation provides more promising bivariate histograms: no bias around the
boundaries is visible for both MC-RAND and LHS-PAE sampling schemes. The statistics of the
weights do not depend systematically on the position in the hypercube.

5. Numerical Examples of MC Integration & Discussion

This section studies whether weighting in MC integrals based on the Voronoi tessellation improves
the quality of the estimates. Three basic transformations g of standard independent Gaussian
random variables Xv, v = 1, . . . , Nvar have been selected for the numerical study. The following
array presents formulas of the three functions (first column), the analytical solutions for the mean
values (second column) and standard deviations (third column):

Zsum = gsum(X) =

Nvar∑
v=1

X2
v µsum = Nvar σsum =

√
2Nvar (11)

Zexp = gexp(X) =

Nvar∑
v=1

exp(−X2
v ) µexp =

√
3

3
Nvar σexp =

√
Nvar

√√
5

5
− 1

3
(12)

Zprod = gprod(X) =

Nvar∏
v=1

Xv µprod = 0 σprod = 1 (13)
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The two sampling schemes studied above (MC-RAND and LHS-PAE) have been used to prepare
Nrun = 1000 sampling plans for various sample sizes Nsim and dimensions Nvar. Each sample set is
accompanied by both types of tessellations – periodic and clipped.

The performance of the approaches to estimate the integrals will be demonstrated by showing
their ability to estimate the mean value and standard deviation of the transformed variable Z =
g (X). The estimated mean value and standard deviation are denoted as µ̄Z and σ̄Z , respectively:

µ̄Z =

Nsim∑
i=1

g(xi) · wi (14)

(σ̄Z)2 =
Nsim

Nsim − 1

Nsim∑
i=1

(g(xi)− µ̄Z)2 · wi (15)

The term Nsim/ (Nsim − 1) is a standard adjustment that makes the sample variance unbiased.
Analogical adjustment terms are known for higher statistical moments of random variables, see
e.g. (Cramér, 1945). When the individual sampling points have unequal weights, similar correction
terms have recently been derived (Rimoldini, 2014). The corrections use terms calculated as sums

of pth powers of weights: Vp =
∑Nsim

i=1 wp
i . For example, in the case of estimation of variance (σ̄Z)2,

the term Nsim/ (Nsim − 1) is replaced by V 2
1 /
(
V 2

1 − V2

)
. The corresponding unweighted form can

be achieved by direct substitution of wi = 1/Nsim. This results in Vp = 1/Nsim
p−1 (or simply

Vp = Nsim) for all p, leading to the known formulas for sample-size unbiased moments (Cramér,
1945). We note that in the case of functions studied in the present paper, the enhancement using
Vp makes almost no change compared to the results obtained with considering all Vp = Nsim.

Three approaches to the weighting in Monte-Carlo type numerical integration are compared:

− uniform weights that assign each design point a constant weight wi = 1/Nsim,

− clipped Voronoi weights that assign weights according to the “volumes” of Voronoi regions
obtained using the clipped tessellation,

− periodic Voronoi weights that use periodic Voronoi tessellation.

Based on the study focused on spatial distribution of weights within the design domain, one
might expect that the periodic tessellation may or may not deliver improvement while the clipped
tessellation must lead to biased MC integration when used to perform weighting. The results of
numerical study are presented in Figure 4 for all three functions, two estimated statistical moments,
two sampling schemes and three alternatives of weighting. Each alternative presents a line of the
average with a scatter-band (shaded area) obtained as the mean value ± one standard deviation
– both computed using Nrun = 1000 realizations. A three dimensional domain has been selected:
Nvar = 3.

The standard procedure employing uniform weights leads to convergence to the exact value as
expected. The estimator variance decreases with increasing Nsim.

The clipped Voronoi weights provide poor estimates as expected. Although the variance is
generally lower than in case of uniform weights, the average converges significantly slower. The
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Figure 4. Convergence of the estimated mean values and standard deviations of the three transformed variables gsum,
gexp and gprod, computed for Nvar = 3. Left column: MC-RAND, Right column: LHS-PAE.
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reason is the improper volumes of boundary cells, the boundary zones are underestimated followed
by the overestimated zone (see e.g. the bivariate histograms in Figure 3). It eventually also converges
to the correct solution as the biased boundary region gets narrower with increasing Nsim.

Application of the periodic Voronoi diagram to obtain weights for calculation of statistics of
the transformed random variable Z provides, on average, similar convergence to the exact value as
observed with uniform weights. Also the variance of the estimator is similar. In fact, the variance
of estimators seems to be slightly improved for MC-RAND sampling scheme, however, consider-
ing the relatively high computational cost related to evaluation of periodic Voronoi weights, the
improvement is not worth the effort.

6. Conclusions

This paper studied two alternatives of Voronoi tessellation in an attempt to improve Monte-Carlo
integration for small Nsim by weighting individual sampling points. The weights were obtained as
volumes of the Voronoi cells – the regions surrounding the sampling points in the design domain
(unit hypercube).

Weighting using the clipped Voronoi tessellation (a tessellation limited to the design domain)
was found inapplicable due to problems related to the presence of boundaries of the unit hypercube.
The tessellation results in systematic appearance of underestimated regions near the boundaries
followed by regions with over-weighted regions.

The periodic tessellation slightly improves the integration if the location of sampling points is
not optimized such as in the case for crude Monte Carlo sampling. However, the minor improvement
does not outweigh the additional effort spend on the evaluation of the volumes of the regions and
the tessellation.
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Audze, P. and V. Eglājs. New approach for planning out of experiments. In Problems of Dynamics and Strengths,
35:104–107, Russian, 1977.

Aurenhammer, F. Voronoi Diagrams - A Survey of a Fundamental Geometric Data Structure. ACM Computing
Surveys, 23(3):343–405, 1991.

Barber, C.B., D.P. Dobkin and H.T. Huhdanpaa. The Quickhull algorithm for convex hulls. ACM Transactions on
Mathematical Software, 22(4):469–483, 1996. http://www.qhull.org

Chan, T.M.Y., J. Snoeyink and Ch.K. Yap. Output-sensitive construction of polytopes in four dimensions and clipped
Voronoi diagrams in three. In: Proceedings of the sixth annual ACM–SIAM symposium on discrete algorithms,
282–291, 2013.

Cramér, H. Mathematical Methods of Statistics. Princeton landmarks in mathematics and physics, 1945.
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