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Abstract: A static analysis of structural systems with uncertain parameters is presented. Uncer-
tain load and material parameters of the system are modeled by probability-boxes (or p-boxes),
which do not require complete information about the statistical nature of the underlying random
process. Arithmetic operations on p-boxes yield guaranteed lower and upper bounds on the proba-
bility distribution of the solution, regardless of the dependency among those uncertain parameters.
In this paper, both load and material uncertainties for the first time are handled using a non-
Monte-Carlo p-box approach that guarantees to enclose the exact solution. The governing linear
equations are solved by an iterative approach that exploits a fixed-point formulation of the system
of linear equations. In order to reduce overestimation and obtain the tightest bounds possible, a
decomposition of the stiffness matrix of the structure is adopted. The resulting formulation gives
guaranteed lower and upper bounds of the probability distribution of the structural responses, at
a high computational efficiency and a low overestimation level.
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1. Introduction

Real systems contains uncertainties that cause discrepancy between the performance of the the-
oretical model and the real system (Fernández-Mart́ınez et al., 2013). Conventional treatment of
uncertainties involves probability theory, which models uncertain parameter in the system using ran-
dom variables (Kolmogorov, 1950). This probabilistic approach successfully handles problems when
the statistical nature of the uncertainty is well understood. Thus it is suitable when only allegoric
uncertainties are present. However, when the nature of the uncertainty is not well understood and
epistemic uncertainties are present (Moens and Hanss, 2011; Zhang, 2005), alternative approaches
are proposed, such as Bayesian network (Igusa et al., 2002; Soize, 2013), fuzzy sets (Dehghan et
al., 2006; Klir and Wierman, 1999), evidence theory (Dempster, 1967; Shafer, 1968), and intervals
(Alefeld and Herzberger, 1984; Kulisch and Miranker, 1981; Moore et al., 2009; Muhanna et al.,
2007).

The probability-box approach (or more compactly, p-box) integrates the conventional probability
theory with the concept of intervals (Augustin and Hable, 2010; Beer, et al., 2013; Ferson, 2002).
A p-box gives the lower and upper bounds on the cumulative distribution function (CDF) for an
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uncertain variable. It is subject to any legitimate CDF within the given lower and upper bounds.
Hence a traditional random variable can be interpreted as a p-box with zero width, and an interval
can be interpreted as a rectangular p-box with constant width (Ferson, 2002).

One of the advantage of the p-box approach is the incorporation of bounded dependence in-
formation. In application of conventional probability theory, dependence of two random variables
are simplified to their covariance or correlation coefficient (Cui and Blockley, 1990; Davis and
Hall, 2003; Lucas, 1995). For linear dependence, the correlation coefficient is either 1 (perfect
dependence) or −1 (opposite dependence). For independent variables, the correlation coefficient is 0.
Then information about the covariance or correlation is used to analyse the random variables under
consideration. Complete information about dependence is given by a joint probability distribution.
However, it is often measured by limited information as covariance correlation coefficient (Ferson,
et al., 2004). For instance, it is easy to construct two random variables that has 0 correlation
coefficient but nonlinear dependence. Thus a more vigorous approach is required when available
data is scarce and the consequence is high.

The p-box approach is designed to consider unknown dependence between random variables
(Ferson, et al., 2004; Williamson, 1989). The p-box approach uses copulas (Kimeldorf and Sampson,
1975; Nelsen, 1999; Sklar, 1959), which gives complete information about the dependence of two
random variables. Specifically, lower and upper bounds of the copula is used when performing binary
arithmetic operations on p-boxes, such as addition, subtraction, multiplication, and division. In
addition, due to the duality theorem (Frank and Schweizer, 1979; Williamson, 1989), the convolution
of p-box, which is originally performed on the bounds of the CDF for given value on the random
variable, can be performed on the bounds of the random variable for a given probability level. This
significantly improves computational efficiency and facilitates discretization. Detailed discussion on
p-boxes and their arithmetic operations can be found in Ferson (2002) and Williamson (1989).

In this paper, the p-box approach is applied to solve structural static problems with uncertain
parameters. Both uncertainties in load and in material are considered. To reduce overestimation,
a decomposition strategy (Muhanna and Mullen, 2001; Xiao, 2015) is presented, and a fixed-point
formulation (Xiao, 2015; Xiao, et al., 2015) is implemented to solve the resulting governing linear
system. To illustrate the performance of the current method, two numerical examples are solved,
and the solutions are compared with those obtained from other available methods such as the
interval Monte Carlo method (Zhang, et al., 2012). The results show that the current algorithm
yields a tight p-box that encloses the solution, regardless of the dependence of the random variables.

2. Preliminaries on P-Boxes

A probability-box (or p-box) is useful to describe random variables whose probability distributions
are not fully known. The p-box approach provides a rigorous way to account for uncertainty in
our (lack of) knowledge of the random variables under study (Ferson, et al., 2004) by accounting
for unknown dependence of the random variables. Arithmetic operations on p-boxes are developed
in a way consistent with conventional probability theory (Ferson, 2002; Williamson, 1989). In the
following subsections, some background information about p-boxes are introduced.
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2.1. Description of a p-box

A p-box is defined by its lower and upper bounds on the cumulative distribution function (CDF)
FX(x) and FX(x). It represents all legitimate random distributions whose CDF lie within that
range. For a given value of x, the lower bound FX(x) means the lowest probability that the random

variable X is smaller than x, and the upper bound FX(x) means the highest probability that X is
smaller than x (Williamson, 1989).

The inverse functions of FX(x) and FX(x) gives the respective upper and lower bounds of a
range [x, x] of the random variable X for a given probability level FX . For a given value of FX ,

FX
−1

(FX) is the smallest x such that the probability of X is smaller than x is FX , and FX
−1(FX)

is the largest, where superscript −1 means inverse function. Note that the lower bound function
FX(x) corresponds to the upper bound x for a given FX , and vice versa.

For a discrete description of a p-box, a list of triples [mi, xi, xi] are used (Dubois and Prade,
1991; Zhang, et al., 2012), where mi are the probability masses, and [xi, xi] are the associated
intervals. The i -th probability mass mi can be viewed as the probability that the i -th focal element
[xi, xi] is the range of x. For convenience, the probability masses have the same value for all focal
elements, i.e., mi = 1/m, where m is the number of focal elements in the discretization.

2.2. Dependency and copulas

The complete dependence information between two random variables are described by their joint
probability distribution, which can be specified by a joint probability density function or a joint
cumulative distribution function (Ferson, et al., 2004; Nelsen, 1999; Sklar, 1959). Because we are
primarily dealing with CDF in p-boxes, the latter approach is adopted here.

For given random variables X and Y, any joint cumulative distribution function FXY (X, Y ) can
be expressed in terms of marginal distribution functions FX(x) and FY (y) via the introduction of
a 2D mapping C(a, b) : [0, 1]× [0, 1] 7→ [0, 1]

FXY (X, Y ) = C (FX(x), FY (y)) . (1)

In the above equation, the 2D mapping C(u, v) is a copula, satisfying the following requirements:

− C(a, 0) = C(0, a) = 0 and C(a, 1) = C(1, a) = a for all a ∈ [0, 1];

− C(a1, b1) + C(a2, b2) − C(a1, b2) − C(a2, b1) ≥ 0 for all a1, a2, b1, b2 ≥ 0 such that a1 ≤ a2
and b1 ≤ b2.

Any arbitrary copula C(u, v) satisfies

W (u, v) ≤ C(u, v) ≤M(u, v), (2)

where W (u, v) = max(u + v − 1, 0) and M(u, v) = min(u, v) are the lower and upper Fréchet-
Hoeffding bounds for any copula, respectively (Fréchet, 1951; Hoeffding, 1940). The lower bound
W (u, v) represents an opposite dependence between two distributions, and the upper boundM(u, v)
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represents a perfect dependence. As a side note, independent case is represented by the copula
Π(u, v) = uv. The dual of a copula is defined as

C∗(u, v) = u+ v − C(u, v). (3)

Parametrized copulas can be used to model dependence of different strength. One class of
copulas, the Archimedean class, is associative and admits an explicit formula (Nelsen, 1999). The
Archimedean copula has the following form

Cθ(u, v) = ψ−1θ (ψθ(u) + ψθ(v)) , (4)

where ψθ : [0, 1] 7→ [0, ∞) is the generator function, which is continuous, strictly decreasing, convex,
and ψθ(1) = 0. Some of the most important families of Archimedean copulas include:

− The Clayton family (Clayton, 1978), with generator function ψθ(x) = (x−θ − 1)/θ,

Cθ(u, v) =
(
u−θ + v−θ − 1

)−1/θ
, (5)

where θ ≥ −1. The perfect dependence corresponds to θ = ∞, the opposite dependence is
θ = −1, and the independent case is θ = 0.

− The Frank family (Frank, 1979), with generator function ψθ(x) = ln
( e−θ − 1

e−xθ − 1

)
,

Cθ(u, v) =
1

θ
ln

(
1 +

(e−uθ − 1)(e−vθ − 1)

e−θ − 1

)
, (6)

where θ ∈ R. The perfect dependence corresponds to θ = −∞, the opposite dependence is
θ =∞, and the independent case is θ = 0.

The above discussion is restricted to bivariate case for two random variables X and Y, but the
idea can be easily extended to multi-variate case as well.

2.3. Arithmetic operations on p-boxes

For a single p-box X, its negation, its reciprocal, and its multiplication with a real number are all
p-boxes. For instance, consider its negation Y = −X. Assume the lower and upper bound functions
are FX(x) and FX(x), respectively. Then

FY (y) = 1− FX(−y), FY (y) = 1− FX(−y). (7)

If the discrete description is used, and the focal elements are [xi, xi], the results are

[y
i
, yi] = [−xm+1−i, −xm+1−i], (8)

where m is the number of focal elements.
For two p-boxes X and Y, the result of their arithmetic binary operations, such as addition,

subtraction, multiplication, and division, is also a p-box. The result depends on the lower and upper
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bounds of their respective CDF’s, as well as the copula between X and Y. According to Williamson
(1989), for two p-boxes X and Y, the lower and upper bounds of the CDF of the sum Z = X + Y
are given by

FZ(z) = sup
v ∈R

C
(
FX(z − v), FY (v)

)
, FZ(z) = inf

v ∈R
C∗
(
FX(z − v), FY (v)

)
, (9)

where C(u, v) is the known lower bound of the copula between X and Y, and C∗(u, v) is its dual.
For discrete description, the i -th focal element of the sum, i.e., [zi, zi], is given by

zi = sup
j, k∈C∗

i

(xj + y
k
), zi = inf

j, k∈Ci

(xj + yk), (10)

where j, k ∈ Ci means that j and k satisfy i−1
m ∈ C([ j−1m , j

m ], [k−1m , k
m ]), and j, k ∈ C∗i means

that j and k satisfy i
m ∈ C∗([ j−1m , j

m ], [k−1m , k
m ]). For the Fréchet-Hoeffding lower bound copula

W (u, v) = max(u+ v − 1, 0), Eq. (10) becomes

zi = sup
j∈[1, i]

(xj + y
i+1−j), zi = inf

j∈[i,m]
(xj + yi+m−j) (11)

For multiple p-boxes Xi, when the dependence coefficient θ is constant, both the addition and the
multiplication are associative. The results do not depend on the order of the arithmetic operations
performed. Operations on vector and matrix with p-box entries can be defined accordingly. However,
for each binary arithmetic operation (+, −, ×, or ÷), the corresponding dependence coefficient θ
or the copula Cθ(u, v) in general must be specified. In practice, this is not always possible. Hence
the usual practice is to specify θ corresponding to the lower and upper bounds of the copulas. For
positive dependence, the lower bound θ = 0 and the upper bound θ = ∞ for both the Clayton
family and the Frank family. For negative dependence, θ = −∞ and θ = 0 for the Clayton family,
and θ = −1 and θ = 0 the Frank family. In both cases, the independent case is included as a
subset. Hence the yielded solution considers the least favorable circumstances possible and encloses
the solutions assuming independence, as observed in the comparison with the interval Monte Carlo
solution (Zhang, et al., 2012) in the numerical example section.

For a more comprehensive discussion on arithmetic operations of p-boxes, we refer to the work
of Ferson (2002) and Williamson (1989). In particular, Ferson (2002) considers binary arithmetic
operations under the independence assumption.

3. Finite Element Formulation

Many engineering problems can be reduced to solving the following linear system of equations. For
instance, for structural static analysis, after a displacement-based Finite Element (FE) discretiza-
tion (Bathe and Wilson, 1976; Cook, et al., 2007), the system governing equation is

Ku = f , (12)

where K is the stiffness matrix, f is the equivalent load vector, and u is the unknown displacement
vector. The goal is to solve for the unknown displacement vector u when the external load and the
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structure itself are given. When the system contains uncertain parameters, and those parameters
are modeled by p-boxes, matrix K and vector f contain p-box entries. As a result, the unknown
vector u also contains p-box entries. The goal of the current section is to develop an algorithm to
solve the linear system Eq. (12) when p-box entries are present.

Following our previous work on interval linear systems (Xiao, 2015), to reduce overestimation
in the interval of the final solution, the stiffness matrix K and the equivalent load vector f are
decomposed into a form that minimize the multiple occurrences of the same p-box (Muhanna
and Mullen, 2001). In addition, parametrized copulas are introduced to model dependence among
uncertain parameters. Finally, the linear system Eq. (12) is solved using an iterative approach
(Neumaier and Pownuk, 2007) by transforming the governing equation into a fixed-point form.
Detailed discussions are presented in the following subsections.

3.1. Matrix decomposition strategy

The following decomposition of the stiffness matrix K and the equivalent load vector f is presented

KP = A diag
(
ΛαP

)
AT , fP = FδP , (13)

where the superscripts P emphasize that these variables contain p-box entries. After decomposition,
all the p-box entries are included in vectors αP and δP . The above decomposition eventually reduce
the overestimation of the final solution and helps to obtain a tighter bounds, as illustrated in the
numerical simulation section.

In practice, the decompositions in Eq. (13) are performed at the element level before assem-
bly. First the element stiffness matrix KP

e and the element nodal equivalent load vector fPe are
computed. Their decompositions yield the element matrices Ae, Λe, Fe, α

P
e , and δPe . These are

further assembled into their global counterparts A, Λ, F, αP, and δP . During the assembly, the
element-by-element (EBE) (Rama Rao, et al., 2011) assembly is adopted.

For the standard two-node plane truss elements, assume the Young’s modulus EP are modeled
as p-boxes. The corresponding element stiffness matrix KP

e is given by

KP
e =


EPA/L 0 −EPA/L 0

0 0 0 0
−EPA/L 0 EPA/L 0

0 0 0 0

 . (14)

where L is the element length. Then αP
e contains the only p-box EP in the element, and the

corresponding Ae and Λe are given by

Ae =
{
−1 0 1 0

}T
, Λe =

{
A/L

}
, αP

e =
{
EP
}
. (15)

The element nodal equivalent load vector fPe is decomposed into the form fPe = Feδ
P
e using the

M -δ method (Muhanna and Mullen, 2001). Thus the p-box terms in the element load uncertainty
vector δPe is completely separated from the deterministic part Fe of the equivalent load.

In the element-by-element assembly, the structure is modeled by separated elements and common
nodes that connect the elements. As a result, the structural nodal displacement vector uP is a
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collection of all the element nodal displacement vectors uPe , and the nodal displacement vector
uPn of the common nodes. Then the global stiffness matrix KP and nodal equivalent load fP are
assembled from their element counterparts

uP =


uPe
...

uPe
uPn

 , KP =


KP
e

. . .

KP
e

0

 , fP =


fPe
...

fPe
fPn

 , (16)

where fPn denotes concentrated forces applied directly on the common nodes. The assembly of A,
Λ, F, αP, and δP is similar. Note that KP is a singular matrix.

To eliminate singularity in KP , the compatibility requirements and boundary conditions are
collected into the form of a constraint equation CuP = 0 , which is enforced by the introduction of
a Lagrangian multiplier λP into the energy functional ΠP of the system. The resulting governing
equation of the system becomes {

KP CT

C 0

}{
uP

λP

}
=

{
fP

0

}
. (17)

Noting the decomposition of KP and fP , the above equation becomes({
A
0

}
diag(Λ∆αP )

{
AT 0

}
+

{
K0 CT

C 0

}){
uP

λP

}
=

{
F
0

}
δP , (18)

where ∆αP = αP − α0, and K0 = Adiag(Λα0)A
T . Preferably, α0 is chosen as the midpoint of

the mean of αP . The Lagrangian multiplier λP denotes negative internal forces between element
nodes and common nodes, when the constraint is a compatibility condition; λP denotes reactions
at the supports, when the constraint is an essential boundary condition (Cook, et al., 2007).

3.2. Iterative enclosure approach

The decomposed governing Eq. (18) can be brought into the following compact form

Kg0u
P
g = Fgδ

P −Ag diag
(
Λ∆αP

)
AT
g uPg . (19)

By defining G = K−1g0 , the above equation is rewritten into the following fixed-point form

uPg = (GFg)δ
P − (GAg)

(
AT
g uPg ◦Λ∆αP

)
, (20)

where the following equality has been used

diag
(
Λ∆αP

)
AT
g uPg = diag

(
AT
g uPg

)
Λ∆αP = AT

g uPg ◦Λ∆αP , (21)

where ◦ means the element-by-element product of two vectors. The auxiliary variable vP= AT
g uPg ,

the following fixed-point form is more suitable for developing an iterative scheme

vP = (AT
g GFg)δ

P − (AT
g GAg)

(
vP ◦Λ∆αP

)
. (22)
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To obtain a guaranteed enclosure of vP , we start from the initial guess vP0 = (AT
g GFg)δ

P , and
proceed using the following approach

vPi+1 = (AT
g GFg)δ

P − (AT
g GAg)

(
vPi ◦Λ∆αP

)
. (23)

The iteration stops when vPi stops improving. Final solution uPgn is obtained by substituting AT
g uPg

in Eq. (20) with the converged vPn .
In the calculation, to reduce the overestimation, the deterministic matrices (GFg) and (GAg)

in Eq. (20) and (AT
g GFg) and (AT

g GAg) in Eq. (23) are prepared before the iteration starts.

The initial guess vP0 is obtained by multiplying the deterministic matrix (AT
g GFg) with the p-

box vector δP . During each iteration, firstly Λ∆αP is obtained by multiplying the deterministic
matrix Λ with the p-box vector ∆αP ; secondly Λ∆αP is multiplied element-by-element with the
p-box vector vPi to yield

(
vPi ◦Λ∆αP

)
; thirdly

(
vPi ◦Λ∆αP

)
is multiplied with the deterministic

matrix (AT
g GAg), which is further subtracted to the initial guess (AT

g GFg)δ
P . For each arithmetic

operations (+, −, ×, or ÷) in the calculation, if the two operands are known to be positively
dependent, θ = 0 for both the Clayton family and the Frank family; if they are know to be negative
dependent, θ = −∞ for the Clayton family and θ = −1 for the Frank family.

3.3. Random field modeling

In the above discussion, the p-box vector αP contains Young’s modulus for each element, and
the p-box vector δP contains all the concentrated forces and distributed forces for each element.
Usually these variables cannot vary independently, and it is necessary to describe this dependence
among entries in αP , δP , and other variables such as the displacement vector uP , the Lagrangian
multiplier λP , and the auxiliary variable vP .

In conventional probability theory, such dependence is described by the covariance or correlation
of random variables. Then covariance decomposition technique (or kernel decomposition) such as the
Karhumen-Loève expansion (Ghanem and Spanos, 1991; Zhang and Ellingwood, 1994) is applied to
the auto-covariance function (or auto-covariance matrix in the discrete case). The goal is to either
reduce the number of independent variables required to model the entire random field, or increase
the computational efficiency of the algorithm. However, as pointed out by Ferson, et al. (2004), this
is usually an over-simplification of the dependence of random variables in reality. The covariance
or correlation between two random variables is insufficient to describe the dependence. Instead, a
joint probability distribution in the form of either a joint distribution density function or a copula
is required to completely describe it.

In this paper, the Clayton family of copulas Cθ(u, v) and their duel C∗θ (u, v) are used to model
dependence between random field variables such as Young’s modulus (entries in αP ) and distributed
load (entries in δP ), as well as other variables such as αP , δP , uP , λP , and vP . The yielded
solution provides guaranteed lower and upper bounds on the CDF’s of the quantities of interest.
In the following numerical simulation section, a discussion on the performance of the proposed
hierarchical structure of the dependence modeling is presented.
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4. Numerical Examples

The algorithm discussed previously is implemented in the MATLAB environment. Two structural
problems are solved to illustrate the performance of the presented method: i) a fixed-end bar subject
to axial deformation and ii) a simply supported symmetric 15-bar truss. The current method is
compared with i) an interval Monte Carlo method (see Zhang, et al. (2012) for more detail) and
ii) an analytical solution (only available for the first example). The results show that the current
method is able to yield a conservative enclosure of the solution p-box with little overestimation,
considering any dependence among the uncertain variables.

 

A B 

P 

5 m 5 m 5 m 

 

Figure 1. A fixed-end bar subject to axial load at the free end.

4.1. A fixed-end bar

The first example is a fixed-end bar subject to concentrated load P at the free end, as shown in
Figure 1. The p-box for P is bounded from a normal distribution with an interval mean value
µP = [99, 101] kN and a standard deviation σP = 2 kN. The total length of the bar is 15 m, which
can be divided into three segments of equal length (i.e., L = 5 m for each). For each segment, the
cross section areas are A1 = 0.015 m2, A2 = 0.012 m2, and A3 = 0.010 m2, respectively. The bar is
made of copper, and Young’s moduli Ei (i = 1, 2, 3) of the bar are modeled as p-boxes bounded
by normal distributions. The interval mean value µE = [109, 111] GPa and the standard deviation
σE = 2 GPa. The actual interval mean and standard deviation of P and Ei are given in Table I.

Table I. Bounds on the mean and standard deviation of the contained CDF’s in the p-boxes. P
- concentrated load; Ei - Young’s moduli of the bar in Figure 1.

Concentrated load, kN Young’s moduli, GPa

Mean µP Standard deviation σP Mean µE Standard deviation σE

P [98.86, 101.14] [1.142, 3.136] E1 [108.9, 111.1] [1.142, 3.136]

E2 [108.9, 111.1] [1.142, 3.136]

E3 [108.9, 111.1] [1.142, 3.136]
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Figure 2. P-box solution for the axial force N1 (left half) and axial displacement u3 (right half) of the fixed-end bar
of Figure 1, obtained from different method: the current method assuming all dependency (solid lines), the analytical
solution (dashed lines), the current method assuming independence (dash-dotted lines), and the interval Monte Carlo
method from an ensemble of 100,000 simulations (dotted lines).

A simplified version of the algorithm proposed by Ferson, et al. (2005) is adopted to calculate the
interval bounds of mean and standard deviation. In the FEM discretization, the bar is modeled
by three truss elements. Since the bar is subject to axial deformation only, lateral displacement is
restrained.

The problem has four uncertain parameters, i.e., the concentrated load P and the Young’s moduli
Ei for each element. Now consider any dependence between the load and the Young’s moduli and
a positive dependence among Ei. The analytic solution to the problem is available. The structure
is statically determinate. The axial force in the bar is equal to the concentrated load P . The nodal
axial displacements

u1 = P

(
L

E1A1

)
, u2 = P

(
L

E1A1
+

L

E2A2

)
, u3 = P

(
L

E1A1
+

L

E2A2
+

L

E3A3

)
. (24)

Solutions obtained from the current method, the interval Monte Carlo method, and the analytical
solution from Eq. (24) are compared with each other. To ensure the accuracy of the solution, 50
focal elements are used in the discretization process. The interval Monte Carlo method include
100,000 simulations, in which the interval solver described in the thesis of Xiao (2015) is used.

All solutions report the same axial force, as shown in the left half of Figure 2. This is not
surprising, because the current method can handle load uncertainty without any overestimation
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Table II. Bounds on the mean and standard deviation of the contained CDF’s in the p-boxes. N1 - axial force; ui -
axial displacements of the bar in Figure 1.

Axial force N1, kN Axial displacement u1, mm

Mean µN1 Standard deviation σN1 Mean µu1 Standard deviation σu1

Current, all depend. [−101.13,−98.87] [1.142, 3.136] [0.2864, 0.3197] [0.0000, 0.0244]

Reference (analytical) [−101.13,−98.87] [1.142, 3.136] [0.2880, 0.3190] [0.0000, 0.0227]

Current, independ. [−101.13,−98.87] [1.142, 3.136] [0.2953, 0.3108] [0.0030, 0.0172]

Interval Monte Carlo [−101.14,−98.88] [1.127, 3.096] [0.2965, 0.3098] [0.0036, 0.0145]

Axial displacement u2, mm Axial displacement u3, mm

Mean µu2 Standard deviation σu2 Mean µu3 Standard deviation σu3

Current, all depend. [0.6381, 0.7255] [0.0000, 0.0595] [1.0586, 1.2141] [0.0000, 0.1033]

Reference (analytical) [0.6436, 0.7232] [0.0000, 0.0551] [1.0689, 1.2100] [0.0000, 0.0954]

Current, independ. [0.6637, 0.6999] [0.0048, 0.0380] [1.1055, 1.1673] [0.0068, 0.0631]

Interval Monte Carlo [0.6672, 0.6970] [0.0063, 0.0303] [1.1120, 1.1617] [0.0094, 0.0482]

due to the adoption of the M -δ method proposed by Muhanna and Mullen (2001). The right half
of Figure 2 compares the axial displacements u3 at the free end from different methods. Note
that solution obtained from the current method enclose the analytical solution, with very small
overestimation, while the interval Monte Carlo solution is enclosed by the current method a with
very large underestimation.

To illustrate that the difference is indeed caused by the inclusion of all dependency of random
variables, not by the overestimation in the current method, the solution obtained from the current
method assuming independence between random variables is added in Figure 2. Its difference with
the interval Monte Carlo solution is very small. Table II compares the interval bounds of the mean
and standard deviation of the axial force N1 and axial displacements u1, u2, and u3 obtained from
different methods. Some of the lower bounds of the standard deviation obtained from the current
method and the analytical solution are zero. This is consistent with the observation that those p-
boxes are able to enclose step functions, which correspond to zero standard deviation (the smallest
possible bound of the standard deviation of any probability distribution).

Table III. Computational time of the fixed-end bar (Example 4.1) and
the simple truss (Example 4.2) for different methods.

Fixed-end bar (s) Simple truss (s)

Fixed-point, all dependency 0.41 13.20

Fixed-point, independent 0.07 2.27

Interval Monte Carlo 573.93 907.68

Analytical solution 0.01 N/A
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Figure 3. An 8-joint 15-bar symmetric simple truss subject to point loads.

Table III lists the computational time of the current example (and the next example) for different
methods. The current method is more efficient than the interval Monte Carlo method.

4.2. A symmetric simple truss

The second example is a simply supported symmetric truss composed of 15 bars, as shown in Figure
3. The joints are labeled from 1 to 8, and the bars are labeled from 1 to 15. Point loads P1, P2, P3,
and P4 are applied at joints 5, 2, 6, and 3, respectively. They are bounded by normal distributions
with interval mean values µP1 = [199, 201] kN, µP2 = µP3 = [99, 101] kN, and µP4 = [89, 91] kN
and standard deviation σP1 = σP2 = σP3 = σP4 = 2 kN. Bars 1 to 3, 13 to 15 have the same cross
section area A = 1.0×10−3 m2, and all other bars, that is, bars 4 to 12, have a smaller cross section
area A = 6.0 × 10−4 m2. All the bars are made of steel and their Young’s moduli Ei are modeled
by p-boxes bounded by normal distributions with an interval mean value µE = [198, 202] GPa and
a standard deviation σE = 4 GPa. The corresponding actual mean and standard deviation of Pi
and Ei are given in Table IV.

Assume that the concentrated loads can be any dependence, and the Young’s moduli of the bars
are positively dependent with each other. No further assumptions are made. The axial forces in
bar 2 and bar 8 (i.e., N2 and N8) and the displacements at node 5 (i.e., u5 and v5) are solved and

Table IV. Bounds on the mean and standard deviation of the contained CDF’s in the p-boxes.
Pi - concentrated loads; Ei - Young’s moduli of the truss in Figure 3.

Concentrated load, kN Young’s moduli, GPa

Mean µP Standard deviation σP Mean µE Standard deviation σE

P1 [198.87, 201.13] [1.142, 3.136] Ei [197.7, 202.3] [2.285, 6.271]

P2 [98.87, 101.13] [1.142, 3.136]

P3 [98.87, 101.13] [1.142, 3.136]

P4 [88.87, 91.13] [1.142, 3.136]
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Figure 4. P-box solution for the axial force N2 (upper left) and N8 (upper right) and nodal displacements u5 (lower
left) and v5 (lower right) of the symmetric simple truss of Figure 3, obtained from: the current method assuming
positive dependence for Ei (solid lines), the current method assuming independence (dashed lines), and the interval
Monte Carlo method from an ensemble of 100,000 simulations (dotted lines).
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depicted in Figure 4. Again, 50 focal elements are used to discretize the p-box. Because there is no
simple analytical solution, the current method is compared with the interval Monte Carlo method
obtained from 100,000 simulations. For all the results, solution from the current method is wider
than the interval Monte Carlo solution and always contains it, even for the deterministic axial
force N2. This is not surprising, because the current method considers any dependence between the
random variables, while the interval Monte Carlo method can only consider the independent case.
Again, the solution obtained from the current method assuming independence between random
variables is very close to the interval Monte Carlo solution.

5. Conclusion

A new method is presented to solve linear system of equations with p-box entries, together with an
application to structural static problems for plane trusses. Uncertainties in the system are modeled
as p-boxes, which represent random variables whose CDF lie within the bounds of the p-boxes. The
results are also presented in the form of p-boxes. To reduce overestimation in the obtained bounds,
a matrix decomposition strategy and a fixed-point formulation are adopted, which are originally
used for solving interval linear systems. Numerical examples illustrate that the performance of the
current method is satisfactory.

Though the discussion is currently restricted to static analysis trusses, one of the simplest of
structure forms, the formulation can be extended to more complicated structures such as frames,
plane problems, plates, shells, etc., as well as other types of analysis such as frequency response
analysis, vibration analysis, transient analysis, structural damage detection, etc. The introduction
of p-boxes in the modeling of uncertainties in these problems will provide useful information about
the bounds on the statistical properties of the random variables, regardless of the dependence of
the uncertain parameters involved.
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Ferson, S., L. Ginzburg, V. Kreinovich, L. Longpré and M. Aviles. Exact bounds on finite populations of interval
data. Reliable Computing, 11(3):207–233, 2005.

Ferson, S., R. B. Nelsen, J. Hajagos, D. J. Berleant, J. Zhang, W. T. Tucker, L. R. Ginzburg and W. L. Oberkampf.
Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis. Sandia Report,
SAND2004-3072, 2004.

Frank, M. On the simultaneous associativity of and F (x, y) and x + y − F (x, y). Aequationes Mathematicae,
19:194–226, 1979.

Frank, M. J. and B. Schweizer. On the duality of generalized infimal and supremal convolutions. Rendiconti d́ı
Matematica Series, 4(12):1–23, 1979.
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